yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Rewriting square root of fraction


3m read
·Nov 11, 2024

So we have here the square root, the principal root of one two hundredths. What I want to do is simplify this. When I say simplify, I really mean I want to, if there's any perfect squares here that I can factor out to take it out from under the radical. I encourage you to pause the video and see if you can do that.

All right, so there's a couple of ways that you could approach this. One way is to say, well, this is going to be the same thing as the square root of 1 over the square root of 200. The square root of 1 is just 1 over the square root of 200. There are a couple of ways to try to simplify the square root of 200. I'll do it a couple of ways here.

The square root of 200, you could realize that, okay, look, 100 is a perfect square and it goes into 200. So this is the same thing as 2 times 100. The square root of 200 is the square root of 2 times 100, which is the same thing as the square root of 2 times the square root of 100. We know that the square root of 100 is 10, so it's the square root of 2 times 10, or we could write this as 10 square roots of 2.

That's one way to approach it. But if it didn't jump out at you immediately that you have this large perfect square that is a factor of 200, you could just start with small numbers. You could say, all right, let me do this alternate method in a different color. You could say that the square root of 200, say well, it's divisible by 2, so it's 2 times 100. And if 100 didn't jump out at you as a perfect square, you could say, well, that's just going to be 2 times 50.

Well, I could still divide 2 into that. That's 2 times 25. Let's see. And 25, if that doesn't jump out at you as a perfect square, you could say that, well, see, that's not divisible by 2, not divisible by 3, 4, but it is divisible by 5. That is 5 times 5.

To identify the perfect squares, you would say, all right, are there any factors where I have at least two of them? Well, I have two times two here, and I also have five times five here. So I can rewrite the square root of 200 as being equal to the square root of 2 times 2 times 5 times 5.

Let me just write it all out so to check the common amount of space. So, give myself more space under the radical, the square root of 2 times 2 times 5 times 5 times 5 times 5 times 2 times 2. When I wrote it in this order, you can see the perfect squares here.

Well, this is going to be the same thing as the square root of 2 times 2. This second method is a little bit more monotonous, but hopefully you see that it works. This is one way to think about it, and they really boil down to the same method. We're still going to get to the same answer.

So, the square root of 2 times 2 times the square root of 5 times 5 times the square root of 5 times 5 times the square root of 2 times the square root of 2. Well, the square root of 2 times 2 is just going to be, this is just 2. The square root of 5 times 5, well, that's just going to be 5. So, you have 2 times 5 times the square root of 2, which is 10 times the square root of 2.

So, this right over here is square root of 200. We can rewrite as 10 square roots of 2. So, this is going to be equal to 1 over 10 square roots of 2. Now, some people don't like having a radical in the denominator, and if you wanted to get rid of that, you could multiply both the numerator and the denominator by square root of 2.

Because notice, we're just multiplying by 1, we're expressing 1 as square root of 2 over square root of 2. And then what that does is we rewrite this as the square root of 2 over 10 times the square root of 2 times the square root of 2. Well, the square root of 2 times square root of 2 is just going to be 2, so it's going to be 10 times 2, which is 20.

So, it could also be written like that. Hopefully, you found that helpful. In fact, even this one you could write, if you want to visualize it slightly differently, you could view it as one twentieth times the square root of two. So, these are all the same thing.

More Articles

View All
Why you are perfect #Shorts
There is someone out there who has described your physical appearance and personality as their ideal partner. Now, if only I could find them. These are shower thoughts. There is an optimal head turn speed when looking at someone. Too fast and it’s too ag…
Nested function calls | Intro to CS - Python | Khan Academy
Can I call a function from inside another function? Let’s trace what happens and explore why we might want to organize our code this way. When we call a function from the top level of a program, we create a new stack frame and store all our local variabl…
Heaven on Earth | The Story of God
NARRATOR: The Hindu god Vishnu is the protector of creation, and Angkor Wat was built for him. Inside the temple are over 12,000 square feet of intricately carved reliefs. One relief was created to link King Suryavarman II to Vishnu himself. Look, you can…
PPCs for increasing, decreasing and constant opportunity cost | AP Macroeconomics | Khan Academy
So we have three different possible production possibilities curves for rabbits and berries here, which we’ve already talked about in other videos. But the reason why I’m showing you three different curves is because these three different curves clearly h…
Rainn Wilson Rappels Across a Ravine | Running Wild with Bear Grylls
RAINN: I guess I just, I’m gonna step off the edge. BEAR: Okay, Rainn. I’m not entirely sure how strong these ropes are, so just ease yourself off it. BEAR (off-screen): Actor Rainn Wilson and I are only a few miles from our extraction point. But a deep r…
Weak acid–strong base titrations | Acids and bases | AP Chemistry | Khan Academy
Acetic acid is an example of a weak acid, and sodium hydroxide is an example of a strong base. If we are titrating a sample of acetic acid with sodium hydroxide, acetic acid would be the analyte, the substance that we are analyzing, and sodium hydroxide w…