yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Rewriting square root of fraction


3m read
·Nov 11, 2024

So we have here the square root, the principal root of one two hundredths. What I want to do is simplify this. When I say simplify, I really mean I want to, if there's any perfect squares here that I can factor out to take it out from under the radical. I encourage you to pause the video and see if you can do that.

All right, so there's a couple of ways that you could approach this. One way is to say, well, this is going to be the same thing as the square root of 1 over the square root of 200. The square root of 1 is just 1 over the square root of 200. There are a couple of ways to try to simplify the square root of 200. I'll do it a couple of ways here.

The square root of 200, you could realize that, okay, look, 100 is a perfect square and it goes into 200. So this is the same thing as 2 times 100. The square root of 200 is the square root of 2 times 100, which is the same thing as the square root of 2 times the square root of 100. We know that the square root of 100 is 10, so it's the square root of 2 times 10, or we could write this as 10 square roots of 2.

That's one way to approach it. But if it didn't jump out at you immediately that you have this large perfect square that is a factor of 200, you could just start with small numbers. You could say, all right, let me do this alternate method in a different color. You could say that the square root of 200, say well, it's divisible by 2, so it's 2 times 100. And if 100 didn't jump out at you as a perfect square, you could say, well, that's just going to be 2 times 50.

Well, I could still divide 2 into that. That's 2 times 25. Let's see. And 25, if that doesn't jump out at you as a perfect square, you could say that, well, see, that's not divisible by 2, not divisible by 3, 4, but it is divisible by 5. That is 5 times 5.

To identify the perfect squares, you would say, all right, are there any factors where I have at least two of them? Well, I have two times two here, and I also have five times five here. So I can rewrite the square root of 200 as being equal to the square root of 2 times 2 times 5 times 5.

Let me just write it all out so to check the common amount of space. So, give myself more space under the radical, the square root of 2 times 2 times 5 times 5 times 5 times 5 times 2 times 2. When I wrote it in this order, you can see the perfect squares here.

Well, this is going to be the same thing as the square root of 2 times 2. This second method is a little bit more monotonous, but hopefully you see that it works. This is one way to think about it, and they really boil down to the same method. We're still going to get to the same answer.

So, the square root of 2 times 2 times the square root of 5 times 5 times the square root of 5 times 5 times the square root of 2 times the square root of 2. Well, the square root of 2 times 2 is just going to be, this is just 2. The square root of 5 times 5, well, that's just going to be 5. So, you have 2 times 5 times the square root of 2, which is 10 times the square root of 2.

So, this right over here is square root of 200. We can rewrite as 10 square roots of 2. So, this is going to be equal to 1 over 10 square roots of 2. Now, some people don't like having a radical in the denominator, and if you wanted to get rid of that, you could multiply both the numerator and the denominator by square root of 2.

Because notice, we're just multiplying by 1, we're expressing 1 as square root of 2 over square root of 2. And then what that does is we rewrite this as the square root of 2 over 10 times the square root of 2 times the square root of 2. Well, the square root of 2 times square root of 2 is just going to be 2, so it's going to be 10 times 2, which is 20.

So, it could also be written like that. Hopefully, you found that helpful. In fact, even this one you could write, if you want to visualize it slightly differently, you could view it as one twentieth times the square root of two. So, these are all the same thing.

More Articles

View All
Every Mathematical Theory Is Held Inside a Physical Substrate
There goes my solution for Zeno’s paradox, which is: before you can get all the way somewhere, you have to get halfway there. And before you can get halfway there, you have to get a quarter of the way there. And therefore, you’ll never get there. One way…
A.I. Policy and Public Perception - Miles Brundage and Tim Hwang
Alright guys, I think the most important and pressing question is, now that cryptocurrency gets all the attention and AI is no longer the hottest thing of technology, how are you dealing with it? Yeah, Ben Hamner of Kaggle had a good line on this. He sai…
2017 AP Calculus AB/BC 4c | AP Calculus AB solved exams | AP Calculus AB | Khan Academy
Let’s now tackle part C, which tells us that for T is less than 10, an alternate model for the internal temperature of the potato at time T minutes is the function G that satisfies the differential equation: The derivative of G with respect to T is equal…
Powers of zero | Exponents, radicals, and scientific notation | Pre-algebra | Khan Academy
In this video, we’re going to talk about powers of zero. Just as a little bit of a reminder, let’s start with a non-zero number just to remind ourselves what exponentiation is all about. So, if I were to take 2 to the first power, one way to think about …
Neuromarketing: You're Being Manipulated
This video is sponsored by The Daily Upside, a free business and finance newsletter delivered every single weekday. Nowadays, it seems to be a common theme amongst almost everyone to go out and shop our way to happiness. You know, just to take care of our…
Sal Discusses the Safety of Reopening Schools on the Situation Room With Wolf Blitzer
Doctor, when the CDC Director, Robert Redfield, says these new guidelines are meant to facilitate the opening of schools around the country, not keep them closed. Based on your reading of these new guidelines, do you think they accomplish that goal? Well…