yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Determining and representing the domain and range of exponential functions | Khan Academy


4m read
·Nov 10, 2024

We're told to consider the exponential function f, which they've after righted over here. What is the domain and what is the range of f? So pause this video and see if you can figure that out.

All right, now let's work through this together. So let's first of all just remind ourselves what domain and range mean. Domain is all of the X values that we could input into our function where our function is defined. So if we look over here, it looks like we can take any real number X, that is, any positive value. It looks like it's defined. This graph keeps going on and on to the right, and this graph keeps going on and on to the left. We could also take on negative values; we could even say x equals z. I don't see any gaps here where our function is not defined.

So our domain looks like all real numbers. Or another way to think about it is X can take on any real number. If you put it into our function, f of x is going to be defined.

Now let's think about the range. The range, as a reminder, is the set of all of the values that our function can take on. So when we look at this over here, it looks like if our X values get more and more negative, the value of our function just goes up towards infinity. So it can take on these arbitrarily large values. But then as we move in the positive X direction, our function value gets lower and lower and lower, and it looks like it approaches zero but never quite gets to zero.

Actually, that's what this dotted line over here represents. That's an asymptote. That means that as X gets larger and larger and larger, the value of our function is going to get closer and closer to this dotted line, which is at y equal 0, but it never quite gets there. So it looks like this function can take on any real value that is greater than zero, but not at zero or below zero.

So all real numbers greater than zero, or another way to think about it is we could set the range of saying f of x is greater than zero, not greater than or equal to. It'll get closer and closer but not quite equal.

Let's do another example where they haven't drawn the graph for us. So consider the exponential function H, and actually let me get rid of all of this so that we can focus on this actual problem. So consider the exponential function H where H of X is equal to that. What is the domain and what is the range of H?

So let's start with the domain. What are all of the X values where H of X is defined? Well, I could put any x value here. I could put any negative value. I could say what happens when x equals z. I can say any positive value. So once again, our domain is all real numbers for X.

Now what about our range? This one is interesting. What happens when X gets really, really, really large? Let's pick a large x. Let's say we're thinking about H of 30, which isn't even that large, but let's think about what happens. That's -7 * (2/3) to the 30th power.

What does (2/3) to the 30th power look like? That's the same thing as equal to -7 * (2^30) / (3^30). You might not realize it, but (3^30) is much larger than (2^30). This number right over here is awfully close to zero.

In fact, if you want to verify that, let me take a calculator out, and I could show you that if I took (2 / 3), which we know is 0.666 repeating, and if I were to take that to the 30th power, it equals a very, very, very small positive number. But then we're going to multiply that times -7, and if we want, let's do that times -7. It equals a very, very small negative number.

Now if you go the other way, if you think about negative exponents, so let's say we have H of -30. That's going to be -7 * (2/3) to the -30, which is the same thing as -7. This negative, instead of writing it that way, we could take the reciprocal here. This is the same thing as -7 * (3/2) to the positive 30th power.

Now this is a very large positive number, which we will then multiply by -7 to get a very large negative number. Just to show you that that is a very large positive number. So if I take (3/2), which is 1.5, of course, (3/2) and I am going to raise that to the 30th power, that is a, well, it's roughly 192,000. But now if I multiply by -7, it's going to become a large negative number.

Just to show you that is a very large positive number. If we take three halves, which is 1.5, and I am going to raise that to the 30th power, that is, well, it's roughly 192,000.

But now if I multiply by -7, it's going to become a large negative number times -7. It's equal to a little bit over a million.

So one way to visualize this graph, and I'll do it very quickly, is what's happening here. If we want, we can think about this as the x-axis and the y-axis. We can even think about when x equals 0; this is all one.

So h of 0 is equal to -7. So if we say -7 right over here, when X is very negative, H takes on very large negative values. We just saw that. And then as X becomes more and more positive, it approaches zero. The function approaches zero but never quite exactly gets there.

And so once again, we could draw that dotted, let me do that in a different color so you can see it. We can draw that dotted asymptote line right over there.

So what's the range? So we could say all real numbers less than zero. So let me write that: it is all real numbers less than zero, or we could say that f of x can take on any value less than zero. f of x is going to be less than zero. It approaches zero as X gets larger and larger but never quite gets there.

More Articles

View All
Baidu's AI Lab Director on Advancing Speech Recognition and Simulation
Today we have Adam Coats here for an interview. Um, Adam, uh, you run the AI Lab at Buu in Silicon Valley. Um, could you just give us a quick intro and explain what Buu is for people who don’t know? Yeah, um, so BYU is actually the largest search engine …
Why Design Matters: Lessons from Stripe, Lyft and Airbnb
Today on design review, we’ll be doing something a little bit different. I’ll be interviewing Katie Dill, Stripe’s head of design. The gravitational pull is to mediocrity. It’s never easy. There is no black and white answer of like, “Oh, you ship it when …
What To Do When You Are STUCK
Hello airlock sir. We’re slowly but surely getting closer to that time of year when you’ll start saying, “New year, new me.” While the new year is a great time to start auditing your life and finding areas that could use improvement, some of you feel stuc…
Increased politicization of the Supreme Court | AP US Government and Politics | Khan Academy
In your mind, why is the Supreme Court important? Well, the Supreme Court is important for the original founders’ reasons, or that it was like all American institutions. There were ideas the founders had, and then John Marshall, an important justice, cre…
Lac operon
We’re now going to talk about one of the most famous operons, and this is the Lac operon. It is part of the E. coli genome and is involved in the metabolism of lactose. The “Lac” right over here is referring to lactose, and so you can imagine that it code…
15 Signs You’re Pre-Rich
Some of you aren’t broke, right? You’re just on the way to becoming rich. Let’s call you pre-rich. Your time hasn’t come yet, but you might share some of these early signs that one day, probably soon, your reality will match your potential. Here are 15 si…