yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Radiation vs Radioactive Atoms


2m read
·Nov 10, 2024

Radiation has been in the news a lot lately, but the term "radiation" has just been thrown around loosely to mean anything potentially damaging coming away from a nuclear power plant. So, what are people worried about? That it's going to, like, explode and release radiation? But you don't know what's leaking or radiation. I don't think they actually know what they're worried about getting out of the reactor.

So, I want to clear up this confusion between radiation on the one hand and the radioactive atoms that release it on the other. The radiation is the stuff—anything that radiates out from a nucleus—we call it nuclear radiation. Makes sense? And that's the stuff that can actually do damage to your molecules and cells.

I have a source here which releases beta particles, and I have a Geiger counter which makes a click every time it gets hit by a bit of radiation. So, you can see that there is a lot of radiation coming from this source right now. It's actually not that much, but, you know, it sounds like a lot. What I want to point out is that as I move the Geiger counter away from the source, the radiation very quickly falls off. A lot of this radiation can't really pass through air.

What are we worried about, like, coming out of the plant? I guess the um, probably the alpha particles, really. But you're saying the alpha particles can't get that far? No, they can't. But so why are we worried about them? They're just going to, like, die when? Exactly. Beta particles? They can…

The alpha and beta radiation can be absorbed by next to nothing. Doesn’t radiation drop off proportionately as it goes along? Like, it's not a linear relationship, but it's more of a negative exponential relationship. So, if the radiation can't go very far, why are we worried about it?

Well, the truth is we're not worried about the radiation itself; we're worried about the radioactive atoms that release it. So, we're worried about the stuff in here. In a nuclear power plant, there's a lot of radioactive atoms that can escape into the atmosphere, into the environment, in the case of an explosion.

It is those radioactive atoms that we're concerned about. These radioactive atoms can be spread in the atmosphere over hundreds of kilometers, and they can effectively coat everything with a blanket of this radioactive dust. Then you breathe it in or you eat it, and it's at that point when the radioactive atom is inside you that it releases its radiation in a damaging way.

Because then, the radiation is delivered directly to your cells, and it can cause damage to your molecules and cells, which can lead to health problems later on. So, it's not really radiation that we're worried about directly seeping out through the walls of nuclear power plants; it's the radioactive material, the radioactive atoms inside that we're worried about escaping, and then doing damage once they've reached us.

More Articles

View All
7 Habits That Make You Weak | Transform Your Life with Stoicism | STOICISM INSIGHTS
Life is a journey with many ups and downs, difficulties and victories. The struggle between our inner strengths and weaknesses never ends. Although everyone wants to lead a resilient and purposeful life, there are certain habits that frequently prevent us…
3d vector fields, introduction | Multivariable calculus | Khan Academy
So in the last video, I talked about vector fields in the context of two dimensions, and here I’d like to do the same but for three dimensions. A three-dimensional vector field is given by a certain multivariable function that has a three-dimensional inp…
How Do You Become Santa Claus? Santa School, Of Course! | National Geographic
Now the reason why it’s important that you learn to do this, it’s because you’re the most photographed people in the world. The Charles W. Howard Santa Claus School is the world’s oldest Santa Claus school. It is here to help Santa’s become [Music]. The S…
Analyzing related rates problems: expressions | AP Calculus AB | Khan Academy
The base ( b ) of the triangle is decreasing at a rate of 13 meters per hour, and the height ( h ) of the triangle is increasing at a rate of 6 meters per hour. At a certain instant ( t_0 ), the base is 5 meters and the height is 1 meter. What is the rat…
The Slight Edge by Jeff Olson: Summary
Hey, it’s Joey and welcome to Better Ideas! If you’re like most people, you’ve had a vision of your potential future self: the richer, better looking, better groomed, happier version of yourself. Have you ever wondered if you can actually, you know, be t…
The Shark Immune System | When Sharks Attack
[music playing] NARRATOR: As experts begin to search for other explanations, they turn their attention to a series of disturbing discoveries that occurred in the months following the June 2012 attacks. We had some dolphins that washed up already dead. We…