yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Second partial derivative test example, part 1


4m read
·Nov 11, 2024

So one common type of problem that you see in a number of multivariable calculus classes will say something to the effect of the following: find and classify all of the critical points of, and then you'll insert some kind of multivariable function.

So first of all, this idea of a critical point basically means anywhere where the gradient equals zero. So you're looking for places where the gradient of your function at some kind of input, some specified input (x) and (y) that you're solving for, is equal to zero. As I've talked about in the last couple videos, the reason you might want to do this is because you're hoping to maximize the function or to maybe minimize the function.

Now, the second requirement of classifying those points, that's what the second derivative test is all about. Once you find something where the gradient equals zero, you want to be able to determine: is it a local maximum, is it a local minimum, or is it a saddle point?

So let's go ahead and work through this example. The first thing we're going to need to do, if we're solving for when the gradient equals 0, and remember when we say equal 0, we really mean the zero vector, but it's just a convenient way of putting it all on one line. We take both partial derivatives.

So the partial derivative with respect to (x) is, well, this first term, when we take the derivative of (3x^2 \cdot y) with respect to (x), that 2 hops down, so we have (6xy^3). Well, (y) looks like a constant, so (y^3) looks like a constant, minus (3x^2). So that 2 comes down, so we're subtracting off (6x). Again, this (3y^2) term, (y) looks like a constant, so everything here looks like a constant with zero derivative as far as the (x) direction is concerned.

Now, we do the partial of (f) with respect to (y). Then this first term looks like some sort of constant (3x^2); (x) looks like a constant, so some kind of constant times (y). So the whole thing looks like (3x^2). The second term, minus (x^3), minus (y^3), excuse me, looks like minus (3y^2) when we take the derivative, minus (3y^2).

Then this next term only has an (x), so it looks like a constant as far as (y) is concerned. Then this last term, we take down the 2 because we're differentiating (y^2), and you'll get (-6y), (-6 \cdot y).

So when we are finding the critical points, the first step is to set both of these guys equal to 0. So this first one, when we do set it equal to zero, we can simplify a bit by factoring out (6x). So this really looks like (6x \cdot (y - 1)) and then that's what we're setting equal to zero.

What this equation tells us is that either it's the (6x) term that equals 0, in which case that would mean (x) is equal to 0, or it's the case that (y - 1 = 0), in which case that would mean that (y = 1). So at least one of these things has to be true. That's kind of the first requirement that we've found.

Let me scroll down a little bit here. For the second equation, when we set it equal to 0, it's not immediately straightforward how you would solve for this in a nice way in terms of (x) and (y). But because we've already solved one, we can kind of plug them in and say, for example, if it was the case that (x = 0), and we kind of want to see what that turns our equation into, then we would have, well (3x^2) is nothing, that would be (0) and we'd just be left with (-3y^2 - 6y = 0).

We can factor out a bit, so I'm going to factor out a (-3y). So I'll factor out (-3y), which means that first term just has a (y) remaining, and then that second term has a (2), a positive (2) since I factored out (-3). So positive (2), and that equals (0). So what this whole situation would imply is that either (-3y = 0), which would mean (y = 0), or it would be the case that (y + 2 = 0), which would mean that (y = -2).

So that's the first situation where we plug in (x = 0). Now alternatively, there's the possibility that (y = 1). So we could say (y = 1) and what that gives us in the entire equation, we still have that (3x^2) because we're kind of solving for (x) now. (3x^2) and then the rest of it becomes, let's see, (-3 \cdot 1^2), so minus (3). We're plugging in (1) for (y), and we subtract off (6), plugging in that (1) for (y) again, and that whole thing is equal to (3x^2), then minus (3 - 6), so I'm subtracting off (9).

From here, I can factor out a little bit, and this will be (3 \cdot (x^2 - 3)). What that implies then, since this whole thing has to equal (0), what that implies is that (x^2 - 3 = 0). So we have (x = \pm \sqrt{3}).

Maybe I should kind of specify these are distinct things that we found. One of them was in the circumstance where (x = 0), and then the other was what we found in the circumstance where (y = 1). So this gives us a grand total of three different critical points because in the first situation where (x = 0), the critical points that we have, well both of them are going to have an (x) coordinate of (0) in them, an (x) coordinate of (0), and the two corresponding (y) coordinates are (0) or (-2). So you have (0) or (-2).

There's kind of two possibilities, and then there's another two possibilities here where if (y = 1), when (y = 1), we'll have (x) as positive or negative (\sqrt{3}). So we have positive (\sqrt{3}) and (y = 1), and then we have negative (\sqrt{3}) and (y = 1).

So these are the critical points, critical points which basically means all partial derivatives are equal to (0). In the next video, I will classify each of these critical points using the second partial derivative test.

More Articles

View All
The Role of Management Tools to Build an Organization's Culture
I think the most important thing is to have the right culture, right the right values. How are you dealing with yourself, and how are you dealing with others? So, in my case, I wanted meaningful work and meaningful relationships through radical truthfuln…
Mapping the Mysterious Islands Near San Francisco | Best Job Ever
Ross and I went out to the ferons to capture conservation stories and map The Refuge. The Falon National Wildlife Refuge is the largest seabird nesting colony in the lower 48 states, and it’s also an incredibly important breeding ground for marine mammals…
Buy REAL Dino Teeth! ... and more! LÜT #20
An R2-D2 pepper mill and cologne that makes you smell like Play-doh. It’s episode 20 of LÜT. This wallet looks like a lot of hundreds, and these bars of soap from ThinkGeek contain caffeine, really. Each shower you take delivers the same as a cuppa coffe…
Additive and multiplicative relationships
We are told that Miguel and a group of friends play soccer during recess each day. More students join them to play. The table below shows the relationship between the number of students joining Miguel and his friends and the total number of students playi…
2011 Calculus AB Free Response #1 parts b c d | AP Calculus AB | Khan Academy
Alright, now let’s tackle Part B. Find the average velocity of the particle for the time period from zero is less than or equal to T is less than or equal to 6. So our average velocity, that’s just going to be our change in position, which we could view …
Rainforests 101 | National Geographic
(Birds chirping) - [Narrator] Shrouded in a blanket of clouds, they awaken. Their canopies of green glitter in the sun. Their wildlife start to slither. (Snake hissing) - Chirp. (Birds chirping) - And growl. (Growling) - And one of the planet’s richest ec…