yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Explained: Beaker Ball Balance Problem


2m read
·Nov 10, 2024

You have made your prediction, and now it is time to see what happens when I release the balance. Ready? In three, two, one.

The balance tips towards the right, towards the hanging, heavier ball. But why does this happen? Well, the best way I can think of to explain this is that both balls displace the same amount of water. So they both experience the same upward buoyant force, which is equal to the weight of the water they displace. That is just Archimedes' Principle.

But by Newton’s Third Law, that means there must be equal and opposite forces down on the water in both beakers. So you would think that both beakers would get heavier by this same amount. Now, for the hanging ball, the beaker does get heavier by this amount because the buoyant force is now supporting some of the weight that used to be supported by this tension in the string. But it is now reduced, and so the beaker actually has more weight.

But for the ping pong ball, the downward force on the water is almost entirely counteracted by the upward force of the tension in that string on the bottom of the beaker. Therefore, the weight of this beaker only increases by the weight of the ping pong ball itself, whereas for the hanging ball, the weight increases by the weight of the water it displaces. So, obviously, this beaker is going to end up being heavier.

Now I want to propose an additional experiment. What if instead of tethering the ping pong ball to the base of this beaker, I just got a free ping pong ball and submerged it with my finger, just barely under the surface of the water? In that case, what do you think would happen when the scale was allowed to rotate? Would it tilt down A) towards the hanging acrylic ball or B) down towards the ping pong ball, which is now just barely submerged under the water or C) would the balance remain perfectly balanced?

So I want you to make your selection, make your prediction by leaving a comment starting with either A, B, or C, and then giving me your explanation. And I will tally up the votes and let you know the answer next time.

More Articles

View All
Electrolytic cells | Applications of thermodynamics | AP Chemistry | Khan Academy
Electrolytic cells use an electric current to drive a thermodynamically unfavorable reaction. Before we look at a diagram of an electrolytic cell, let’s look at the half reactions that will occur in the cell. In one half reaction, liquid sodium ions reac…
Remainder theorem examples | Polynomial Division | Algebra 2 | Khan Academy
So we have the graph here of y is equal to p of x. I could write it like this: y is equal to p of x. And they say, what is the remainder when p of x is divided by x plus three? So pause this video and see if you can have a go at this. And they tell us you…
Warren Buffett Just Sold $75 Billion Worth of Stock
Did you see the news? I’ll send you the link. Oh wow, he sold a lot of stock! Warren Buffett, the best investor that has ever lived, is currently selling massive chunks of his portfolio. Berkshire Hathaway released their quarterly earnings report just a f…
Creativity break: When did you first realize that you liked algebra | Algebra 1 | Khan Academy
[Music] One day, my family was building this fence around my chicken coop because there were problems with raccoons. We wanted to make sure that the perimeter of the fence was like twice the length of the width. I remember thinking this is exactly like m…
10 HABITS THAT WILL MAKE YOU GREAT | MARCUS AURELIUS | STOICISM INSIGHTS
Everyday each of us fights a battle that the rest of the world knows nothing about. This struggle isn’t with the outside world but within the confines of our own minds. Marcus Aurelius, a Roman emperor and a stoic philosopher, once wrote in his personal n…
Eulers formula
So in this video, we’re going to talk about Oilers formula. One of the things I want to start out with is why. Why do we want to talk about this rather oddly looking formula? What’s the big deal about this? And there is a big deal, and the big deal is e. …