yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Explained: Beaker Ball Balance Problem


2m read
·Nov 10, 2024

You have made your prediction, and now it is time to see what happens when I release the balance. Ready? In three, two, one.

The balance tips towards the right, towards the hanging, heavier ball. But why does this happen? Well, the best way I can think of to explain this is that both balls displace the same amount of water. So they both experience the same upward buoyant force, which is equal to the weight of the water they displace. That is just Archimedes' Principle.

But by Newton’s Third Law, that means there must be equal and opposite forces down on the water in both beakers. So you would think that both beakers would get heavier by this same amount. Now, for the hanging ball, the beaker does get heavier by this amount because the buoyant force is now supporting some of the weight that used to be supported by this tension in the string. But it is now reduced, and so the beaker actually has more weight.

But for the ping pong ball, the downward force on the water is almost entirely counteracted by the upward force of the tension in that string on the bottom of the beaker. Therefore, the weight of this beaker only increases by the weight of the ping pong ball itself, whereas for the hanging ball, the weight increases by the weight of the water it displaces. So, obviously, this beaker is going to end up being heavier.

Now I want to propose an additional experiment. What if instead of tethering the ping pong ball to the base of this beaker, I just got a free ping pong ball and submerged it with my finger, just barely under the surface of the water? In that case, what do you think would happen when the scale was allowed to rotate? Would it tilt down A) towards the hanging acrylic ball or B) down towards the ping pong ball, which is now just barely submerged under the water or C) would the balance remain perfectly balanced?

So I want you to make your selection, make your prediction by leaving a comment starting with either A, B, or C, and then giving me your explanation. And I will tally up the votes and let you know the answer next time.

More Articles

View All
7 HOLES in the Space Station - Smarter Every Day 135
Ok, it’s Destin. - Deh, it’s Dustin. - Destin, Destin. - Destin. - You got it. - OK, I’ve got it. - [laughs] Alright here’s the deal. We are with Don Pettit. - Have you thought of changing your name to something that’s easier to pronounce? - Just think of…
Stare decisis and precedent in the Supreme Court | US government and civics | Khan Academy
As we’ve talked about in many videos, the United States Supreme Court has a very different role than the executive or the legislative branches. The executive branch, of course, runs the government. The legislative branch, they make the laws and set the bu…
Exclusive: Russian Foreign Minister Sergey Lavrov Describes the War With the US and How to End It
Minister Le, thank you for doing this. Um, do you believe the United States and Russia are at war with each other right now? I wouldn’t say so, and uh, in any case, this is not what we want. Uh, we would like to have normal relations with all our neighbo…
Biden's Corporate Tax Is Madness! | Squawk Box
What are we trying to fix? The economy is on fire. Leave it alone! People living in cities like New York, Los Angeles, to San Francisco, if Biden’s plan went through, they would be the highest taxed individuals on Earth. Is that American? Nah, I don’t thi…
Quadratic approximation formula, part 1
So our setup is that we have some kind of two variable function f(x, y) who has a scalar output, and the goal is to approximate it near a specific input point. This is something I’ve already talked about in the context of a local linearization. I’ve writt…
Curvature formula, part 4
So, we’ve been talking about curvature, and this means, uh, you’ve got some sort of parametric curve that you might think of as parameterized by a vector-valued function s of t. Curvature is supposed to measure just how much this curve actually curves. So…