yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Explained: Beaker Ball Balance Problem


2m read
·Nov 10, 2024

You have made your prediction, and now it is time to see what happens when I release the balance. Ready? In three, two, one.

The balance tips towards the right, towards the hanging, heavier ball. But why does this happen? Well, the best way I can think of to explain this is that both balls displace the same amount of water. So they both experience the same upward buoyant force, which is equal to the weight of the water they displace. That is just Archimedes' Principle.

But by Newton’s Third Law, that means there must be equal and opposite forces down on the water in both beakers. So you would think that both beakers would get heavier by this same amount. Now, for the hanging ball, the beaker does get heavier by this amount because the buoyant force is now supporting some of the weight that used to be supported by this tension in the string. But it is now reduced, and so the beaker actually has more weight.

But for the ping pong ball, the downward force on the water is almost entirely counteracted by the upward force of the tension in that string on the bottom of the beaker. Therefore, the weight of this beaker only increases by the weight of the ping pong ball itself, whereas for the hanging ball, the weight increases by the weight of the water it displaces. So, obviously, this beaker is going to end up being heavier.

Now I want to propose an additional experiment. What if instead of tethering the ping pong ball to the base of this beaker, I just got a free ping pong ball and submerged it with my finger, just barely under the surface of the water? In that case, what do you think would happen when the scale was allowed to rotate? Would it tilt down A) towards the hanging acrylic ball or B) down towards the ping pong ball, which is now just barely submerged under the water or C) would the balance remain perfectly balanced?

So I want you to make your selection, make your prediction by leaving a comment starting with either A, B, or C, and then giving me your explanation. And I will tally up the votes and let you know the answer next time.

More Articles

View All
Valence electrons and ionic compounds | AP Chemistry | Khan Academy
In this video, we’re going to get even more appreciation for why the periodic table of elements is so useful. In particular, we’re going to focus on groups of the periodic table of elements. When we talk about a group, we’re just talking about a column. A…
The Unsung Heroes of the Arctic - Ep. 3 | Wildlife: The Big Freeze
[Bertie] Polar bears are such icons of the Arctic. It’s hard for anything else to escape their shadow. But what if I told you only a few inches from the ground, there’s a host of less celebrated little creatures who’ve made a playground of these brutal co…
Top 7 Renovation Mistakes - AVOID THESE!
What’s up guys, it’s Rand here. So over the last six years, I’ve identified five properties, and every one of those five properties needed to be removed. Between those properties, I’ve easily spent over a few hundred thousand dollars on renovations and up…
Safari Live - Day 170 | National Geographic
This program features live coverage of an African safari and may include animal kills and carcasses. Viewer discretion is advised. Well, good afternoon everybody once again and welcome aboard on the sunset Safari. My name is Ralph Kirsten and on the bush…
Graphing hundredths from 0 to 0.1 | Math | 4th grade | Khan Academy
Graph 0.04 on the number line. So here we have this number line that goes from 0 to 0.1, or 1⁄10. Between 0 and 1⁄10, we have 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 equal spaces. Each of these spaces represents 1⁄10 of the distance. It’s 1 out of 10 equal spaces,…
Why Four Cowboys Rode Wild Horses 3,000 Miles Across America (Part 1) | Nat Geo Live
They asked me to, um, start off this speech with a kick. He keeps getting them in and getting them. I mean, J, you cannot eat this stuff! You know what the best thing to do, if you can get in there, just pull it out like a comb. Oh, all right, man, God. …