yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Simplifying more involved radical expressions


3m read
·Nov 11, 2024

We're asked to simplify the expression by removing all factors that are perfect squares from inside the radicals and combining the terms. So, let's see if we can do it. Pause the video and give it a go at it before we do it together.

All right, so let's see how we can rewrite these radicals. So, 4 times the square root of 20, well, that's the same thing as 4 times the square root of 4 times the square root of 5 because 20 is the same thing as 4 times 5.

And 45, and that's the same thing as 9 times 5. The reason why I'm thinking about the 4 and I'm thinking about the 9 is because those are perfect squares. So I could write this as 4 times the square root of 4 times the square root of 5.

Then I could say this part right over here is minus 3 times the square root of 9 times the square root of 5. The square root of 45 is the same thing as the square root of 9 times 5, which is the same thing as the square root of 9 times the square root of 5.

And then all of that is going to be over the square root of 35. Now, are there any perfect squares in 35? 35 is 7 times 5. No, neither of those are perfect squares, so I could just leave that as the square root of 35.

Let's see, the square root of 4, well, that's going to be 2. This is the principal root; we're thinking about the positive square root. The square root of 9 is 3, and so this part right over here is going to be 4 times 2 times the square root of 5.

So, it's going to be 8 square roots of 5, and then this part over here is going to be minus 3 times 3 times the square root of 5. So, minus 9 square roots of 5.

All of that is going to be over the square root of 35. So, let's see if I have 8 of something and I subtract 9 of that something, I'm going to have negative 1 of that something.

So, I could say negative 1 times the square root of 5, or I could just say negative square root of 5 over the square root of 35. I actually think I could simplify this even more because this is the same thing; this is equal to the negative of the square root of 5 over 35.

Both the numerator and denominator are divisible by 5, so we could divide them both by 5, and we would get the square root of—divide the numerator by 5, you get 1, divide the denominator by 5, you get 7. So we could view this as the square root of one-seventh.

Square root of one-seventh, and we are all done. Let's do another one of these; these are strangely fun. Once again, pause it and see if you can work it out on your own. Perform the indicated operations.

All right, so let's first multiply. So this essentially is doing the distributive property twice, and actually, let me just do it that way. So let's distribute the square root of five plus the square root of six.

Let's first multiply it times the square root of five. So, square root of five times square root of five is going to be 5. Square root of five times the square root of six is the square root of 30. So, 5 plus the square root of 30.

Then when I take this expression and I multiply it times the second term, times the negative square root of 6, well, negative square root of 6 times the square root of 5 is going to be the negative of the square root of 30.

Then the negative of the square root of 6 times the square root of 6 is going to be—we're going to subtract 6. The square root of 6 times the square root of 6 is 6, and we have the negative out there.

So just like that, we are left with—well, let's see. Square root of 30 minus square root of 30, well, those cancel out; that's 0, and we're left with 5 minus 6, which is going to be equal to negative 1.

And we are all done. Now, another way that you could have viewed this is you could have seen a pattern here. You could have said, well, this is the same thing as a plus b times a minus b, where a is square root of 5 and b is square root of 6.

We know that this will result in the difference of squares. This will be a squared minus b squared, and so for this particular case, it would be square root of 5 squared minus square root of 6 squared, which of course is equal to 5 minus 6, which is equal to negative 1.

Either way, hopefully you found that vaguely entertaining.

More Articles

View All
Competition, predation, and mutualism | Middle school biology | Khan Academy
All across ecosystems, we know that organisms interact in specific ways, and scientists use special words to describe these types of interaction: competition, predation, and mutualism. So let’s first talk about competition, which we have already talked ab…
Game theory worked example from A P Microeconomics
What we have here is a free response question that you might see on an AP Microeconomics type exam that deals with game theory. It tells us Bread Basket and Quick Lunch are the only two sandwich shops serving a small town, so we’re in an oligopoly situati…
MARS: Humanity's Most Dangerous Mission
Just recently, 18 new Earth-sized exoplanets have been discovered. They range from 70% Earth size to more than twice as large as our planet. We know at least one of them, for certain, has conditions that almost mirror ours on Earth. So, there are worlds o…
Drying Fruits and Vegetables | Live Free or Die: How to Homestead
[Music] What I want to do today is show you how I dry my fruit when I have extra. Then I’ll show you some other things that I also like to [Music] dry. So, the thinner you slice the apples, the faster they’re going to dry. If you don’t slice them thin en…
Indus Valley Civilization | Early Civilizations | World History | Khan Academy
As we’ve talked about in multiple videos, some of the earliest civilizations we have found have been around river valleys, and that is no coincidence. Because some of the first agriculture emerged around river valleys, and the agriculture supported higher…
Harnessing the Power of Yellowstone’s Supervolcano | Podcast | Overheard at National Geographic
The apocalyptic vision of fire bursting from the earth haunts man with the image of all and nature that is beyond his control. [Music] There’s something about volcanoes that makes them the superstars of natural disasters. Magma violently forcing its way t…