yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Angle congruence equivalent to having same measure | Congruence | Geometry | Khan Academy


3m read
·Nov 10, 2024

What we're going to do in this video is demonstrate that angles are congruent if and only if they have the same measure. For our definition of congruence, we will use the rigid transformation definition, which tells us two figures are congruent if and only if there exists a series of rigid transformations that will map one figure onto the other.

And then what are rigid transformations? Those are transformations that preserve distance between points and angle measures. So let's get to it.

So, let's start with two angles that are congruent, and I'm going to show that they have the same measure. I'm going to demonstrate that they start congruent. So these two angles are congruent to each other. Now, this means by the rigid transformation definition of congruence, there is a series of rigid transformations that map angle ABC onto angle DEF.

By definition, rigid transformations preserve angle measure. So if you're able to map the left angle onto the right angle, and in doing so you did it with transformations that preserved angle measure, they must now have the same angle measure. We now know that the measure of angle ABC is equal to the measure of angle DEF.

So we've demonstrated this green statement the first way: that if things are congruent, they will have the same measure. Now let's prove it the other way around.

So now, let's start with the idea that the measure of angle ABC is equal to the measure of angle DEF. To demonstrate that these are going to be congruent, we just have to show that there's always a series of rigid transformations that will map angle ABC onto angle DEF.

To help us there, let's just visualize these angles. So, draw this really fast: angle ABC. An angle is defined by two rays that start at a point, and that point is the vertex. So, that's ABC. And then let me draw angle DEF. So it might look something like this: DEF.

What we will now do is let's do our first rigid transformation. Let's translate angle ABC so that B maps to point E. If we did that, so we're going to translate it like that, then ABC is going to look something like this. It's going to look something like this: B is now mapped onto E.

This would be where A would get mapped to; this would be where C would get mapped to. Sometimes you might see a notation A prime, C prime, and this is where B would get mapped to. And then the next thing I would do is I would rotate angle ABC about its vertex, about B, so that ray BC coincides with ray EF.

Now, you're just going to rotate the whole angle that way so that now ray BC coincides with ray EF. Well, you might be saying, "Hey, C doesn't necessarily have to sit on F," because they might be different distances from their vertices. But that's all right; the ray can be defined by any point that sits on that ray.

So now, if you do this rotation and the end ray BC coincides with ray EF, now those two rays would be equivalent because the measure of angle ABC is equal to the measure of angle DEF. That will also tell us that ray BA now coincides with ray ED.

And just like that, I've given you a series of rigid transformations that will always work. If you translate so that the vertices are mapped onto each other and then rotate it so that the bottom ray of one angle coincides with the bottom ray of the other angle, then you could say the top ray of the two angles will now coincide because the angles have the same measure.

Because of that, the angles now completely coincide. So we know that angle ABC is congruent to angle DEF, and we're now done. We've proven both sides of the statement: if they're congruent, they have the same measure; if they have the same measure, then they are congruent.

More Articles

View All
Assignment: Uplifted | National Geographic
National Geographic and Mazda started Assignment Inspiration, three quests to challenge photographers to test their ability to tell a compelling visual story and to capture inspiring imagery. Beth, Nina, Sam, congratulations to each of you. Truly a once-…
The Stoic Guide To Overcoming The Desire To Escape Everything | STOICISM INSIGHTS
Isn’t it a bit strange that in this vast world we often stick to the same small corners where we were born? Here we are, on this huge spinning globe, and many of us never venture far from where our journey began. Think about it: how often do we find ourse…
Fishing in the Yukon River | Life Below Zero
That’s a bourbon! Holy look, Maya! I got it! Yeah, you got it! Maya was able to pull out a lush, which was a big deal because it’s a different kind of fish. None of my kids ever seen one; I’ve never caught one, and I was really proud of her to be able to …
Genetics 101 | National Geographic
[Narrator] Genetics helps us understand the biological programming behind all life forms. But what exactly is the science of genetics? And what does its future hold? Genetics is the study of heredity. The expression of traits and how they are passed fro…
How To Think Like A Growth Hacker
If your business is a rocket ship, a growth hacker is the engineer who makes sure you’ve got the right mix of fuel to breach the stratosphere and reach the stars. They’re the tinkerers who twist all the right knobs for maximum growth potential. They don’t…
Humpback Whale Migration | Shark vs Whale
NARRATOR: The migrating humpbacks have only one objective now, the safe house of Mozambique. It’s a whale-birthing paradise far from the usual hunting grounds of great white sharks. Vulnerable baby whales can nurse, grow, and gain strength. The adults hav…