yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Angle congruence equivalent to having same measure | Congruence | Geometry | Khan Academy


3m read
·Nov 10, 2024

What we're going to do in this video is demonstrate that angles are congruent if and only if they have the same measure. For our definition of congruence, we will use the rigid transformation definition, which tells us two figures are congruent if and only if there exists a series of rigid transformations that will map one figure onto the other.

And then what are rigid transformations? Those are transformations that preserve distance between points and angle measures. So let's get to it.

So, let's start with two angles that are congruent, and I'm going to show that they have the same measure. I'm going to demonstrate that they start congruent. So these two angles are congruent to each other. Now, this means by the rigid transformation definition of congruence, there is a series of rigid transformations that map angle ABC onto angle DEF.

By definition, rigid transformations preserve angle measure. So if you're able to map the left angle onto the right angle, and in doing so you did it with transformations that preserved angle measure, they must now have the same angle measure. We now know that the measure of angle ABC is equal to the measure of angle DEF.

So we've demonstrated this green statement the first way: that if things are congruent, they will have the same measure. Now let's prove it the other way around.

So now, let's start with the idea that the measure of angle ABC is equal to the measure of angle DEF. To demonstrate that these are going to be congruent, we just have to show that there's always a series of rigid transformations that will map angle ABC onto angle DEF.

To help us there, let's just visualize these angles. So, draw this really fast: angle ABC. An angle is defined by two rays that start at a point, and that point is the vertex. So, that's ABC. And then let me draw angle DEF. So it might look something like this: DEF.

What we will now do is let's do our first rigid transformation. Let's translate angle ABC so that B maps to point E. If we did that, so we're going to translate it like that, then ABC is going to look something like this. It's going to look something like this: B is now mapped onto E.

This would be where A would get mapped to; this would be where C would get mapped to. Sometimes you might see a notation A prime, C prime, and this is where B would get mapped to. And then the next thing I would do is I would rotate angle ABC about its vertex, about B, so that ray BC coincides with ray EF.

Now, you're just going to rotate the whole angle that way so that now ray BC coincides with ray EF. Well, you might be saying, "Hey, C doesn't necessarily have to sit on F," because they might be different distances from their vertices. But that's all right; the ray can be defined by any point that sits on that ray.

So now, if you do this rotation and the end ray BC coincides with ray EF, now those two rays would be equivalent because the measure of angle ABC is equal to the measure of angle DEF. That will also tell us that ray BA now coincides with ray ED.

And just like that, I've given you a series of rigid transformations that will always work. If you translate so that the vertices are mapped onto each other and then rotate it so that the bottom ray of one angle coincides with the bottom ray of the other angle, then you could say the top ray of the two angles will now coincide because the angles have the same measure.

Because of that, the angles now completely coincide. So we know that angle ABC is congruent to angle DEF, and we're now done. We've proven both sides of the statement: if they're congruent, they have the same measure; if they have the same measure, then they are congruent.

More Articles

View All
Equivalent expressions with negative numbers | 7th grade | Khan Academy
Or ask which of the following expressions are equivalent to 2 minus 9.4 plus 0 plus 3.71, and we need to pick two answers. So pause this video and see if you can have a go at it before we do this together. All right, now let’s look through the choices. S…
Ryan Hoover on Product Hunt's Acquisition and Lessons Learned About Launches with Dalton Caldwell
Welcome to the podcast, guys! It’s going to do well. Are you good? Good. Alright, Ryan. So, for those of our listeners who don’t know who you are, what do you work on? So, I started a company five years ago, almost—actually, just over five years ago—call…
Welcome to Earth | Official Trailer | Disney+
[Music] Is it magic or is it madness? I’ve got a confession to make. [Music] I’ve never climbed a mountain, never swum in a lake. [Music] I was in a cave once. I’m beginning to think that I might be missing something. Well, ready? Yes, sir! I asked the b…
Everything wrong with my $100,000 remodel ...
What’s up guys? It’s Graham here, and I got to say I’m really happy that so many of you have been reaching out to me asking for an update on the status of this renovation. I’ve been a little hesitant about posting sooner because I wanted to wait until mor…
Target Practice for Turkeys | Live Free or Die
So I’m going to, I’m going to call out some of these turkeys to go on a date with me, and I’ve been working on my call really. Yeah, it goes like this: you sounded like a turkey. Spring and turkey hunting go hand in hand. At the mountains of North Carolin…
Visual introduction to parabolas
In this video, we are going to talk about one of the most common types of curves you will see in mathematics, and that is the parabola. The word “parabola” sounds quite fancy, but we’ll see it’s describing something that is fairly straightforward. Now, i…