yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Angle congruence equivalent to having same measure | Congruence | Geometry | Khan Academy


3m read
·Nov 10, 2024

What we're going to do in this video is demonstrate that angles are congruent if and only if they have the same measure. For our definition of congruence, we will use the rigid transformation definition, which tells us two figures are congruent if and only if there exists a series of rigid transformations that will map one figure onto the other.

And then what are rigid transformations? Those are transformations that preserve distance between points and angle measures. So let's get to it.

So, let's start with two angles that are congruent, and I'm going to show that they have the same measure. I'm going to demonstrate that they start congruent. So these two angles are congruent to each other. Now, this means by the rigid transformation definition of congruence, there is a series of rigid transformations that map angle ABC onto angle DEF.

By definition, rigid transformations preserve angle measure. So if you're able to map the left angle onto the right angle, and in doing so you did it with transformations that preserved angle measure, they must now have the same angle measure. We now know that the measure of angle ABC is equal to the measure of angle DEF.

So we've demonstrated this green statement the first way: that if things are congruent, they will have the same measure. Now let's prove it the other way around.

So now, let's start with the idea that the measure of angle ABC is equal to the measure of angle DEF. To demonstrate that these are going to be congruent, we just have to show that there's always a series of rigid transformations that will map angle ABC onto angle DEF.

To help us there, let's just visualize these angles. So, draw this really fast: angle ABC. An angle is defined by two rays that start at a point, and that point is the vertex. So, that's ABC. And then let me draw angle DEF. So it might look something like this: DEF.

What we will now do is let's do our first rigid transformation. Let's translate angle ABC so that B maps to point E. If we did that, so we're going to translate it like that, then ABC is going to look something like this. It's going to look something like this: B is now mapped onto E.

This would be where A would get mapped to; this would be where C would get mapped to. Sometimes you might see a notation A prime, C prime, and this is where B would get mapped to. And then the next thing I would do is I would rotate angle ABC about its vertex, about B, so that ray BC coincides with ray EF.

Now, you're just going to rotate the whole angle that way so that now ray BC coincides with ray EF. Well, you might be saying, "Hey, C doesn't necessarily have to sit on F," because they might be different distances from their vertices. But that's all right; the ray can be defined by any point that sits on that ray.

So now, if you do this rotation and the end ray BC coincides with ray EF, now those two rays would be equivalent because the measure of angle ABC is equal to the measure of angle DEF. That will also tell us that ray BA now coincides with ray ED.

And just like that, I've given you a series of rigid transformations that will always work. If you translate so that the vertices are mapped onto each other and then rotate it so that the bottom ray of one angle coincides with the bottom ray of the other angle, then you could say the top ray of the two angles will now coincide because the angles have the same measure.

Because of that, the angles now completely coincide. So we know that angle ABC is congruent to angle DEF, and we're now done. We've proven both sides of the statement: if they're congruent, they have the same measure; if they have the same measure, then they are congruent.

More Articles

View All
What is verbal irony? - Christopher Warner
Translator: Andrea McDonough Reviewer: Bedirhan Cinar Great weather we’re having! Awesome job! You’re a tremendous athlete! Compliments, right? Well, maybe. Depending on the attitude and tone of voice behind these lines, they very well may be compliments…
Can better data defeat the next pandemic? | Michael Dowling | Big Think
MICHAEL DOWLING: During the COVID crisis, we had a system dashboard. So each day we collected information on about 20 different things: the details about new patients coming in; the condition of the patients that we had; the situation with patients leavin…
Solar Energy| Energy Resources and Consumption| AP Environmental science| Khan Academy
The sun is about 93 million miles away, which means it takes about eight minutes for light from the sun to reach Earth. But it’s still close enough for us to take advantage of solar energy, and why wouldn’t we want to? After all, solar energy is renewable…
Fall of the Roman Empire | World History | Khan Academy
[Instructor] In the last video, we talked about the first 200 years of Rome being an official empire, starting with Augustus in 27 BCE, going all the way to Marcus Aurelius. That time period is referred to as Pax Romana, Roman Peace. It’s a relatively sta…
Should you buy your private jet in cash?
Steve, I’m about to buy my first jet. Should I pay cash or should I finance it? I really think it depends. If you can make more money than they’re going to charge with the bank, obviously then borrow the money. But I’d say about 80% of the people finance…
Baby Bison Takes on Wolf and Wins | America's National Parks
Yellowstone is the only place in the US where bison have lived continuously since prehistoric times. Their relentless search for better grazing grounds means crossing rivers like the Lamar. Crossings are no big deal for the grown-ups but a daunting busine…