yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Gradient


4m read
·Nov 11, 2024

So here I'm going to talk about the gradient, and in this video I'm only going to describe how you compute the gradient. In the next couple ones, I'm going to give the geometric interpretation. I hate doing this; I hate showing the computation before the geometric intuition since usually it should go the other way around. But the gradient is one of those weird things where the way that you compute it actually seems kind of unrelated to the intuition. You'll see that we'll connect them in the next few videos, but to do that, we need to know what both of them actually are.

So on the computation side of things, let's say you have some sort of function. I'm just going to make it a two-variable function, and let's say it's f of x, y equals x squared sine of y. The gradient is a way of packing together all the partial derivative information of a function. So let's just start by computing the partial derivatives of this guy.

So partial of f with respect to x is equal to... so we look at this and we consider x the variable and y the constant. Well, in that case, sine of y is also a constant, you know, as far as x is concerned. The derivative of x is 2x, so we see that this will be 2x times that constant sine of y. Whereas the partial derivative with respect to y, now we look up here and we say x is considered a constant. So x squared is also considered a constant, so this is just a constant times sine of y. That's going to equal that same constant times the cosine of y, which is the derivative of sine.

Now what the gradient does is it just puts both of these together in a vector. Specifically, let me all change colors here. You denote it with a little upside-down triangle. The name of that symbol is nabla, but you often just pronounce it del. You'd say del f, or gradient of f, and what this equals is a vector that has those two partial derivatives in it.

So the first one is the partial derivative with respect to x: 2x times sine of y. The bottom one, partial derivative with respect to y: x squared cosine of y. Notice, maybe I should emphasize this, is actually a vector-valued function, right? So maybe I'll give it a little bit more room here and emphasize that it's got an x and a y. This is a function that takes in a point in two-dimensional space and outputs a two-dimensional vector.

So you could also imagine doing this with three different variables. Then you would have three partial derivatives and a three-dimensional output. The way you might write this more generally is we could go down here and say the gradient of any function is equal to a vector with its partial derivatives: partial of f with respect to x and partial of f with respect to y.

In some sense, we call these partial derivatives. I like to think of the gradient as the full derivative because it kind of captures all of the information that you need. A very helpful mnemonic device with the gradient is to think about this triangle, this nabla symbol, as being a vector full of partial derivative operators. And by operator, I just mean, you know, here let's like partial with respect to x, something where you could give it a function and it gives you another function.

So you give this guy, you know, the function f, and it gives you this expression, this multivariable function as a result. So the nabla symbol is this vector full of different partial derivative operators, and in this case, it might just be two of them. This is kind of a weird thing, right? Because it's like, "What? This is a vector; it's got like operators in it? That's not what I thought vectors do."

But you can kind of see where it's going. It's really just a—you could think of it as a memory trick, but it's in some sense a little bit deeper than that. Really, when you take this triangle and you say, "Okay, let's take this triangle," you can kind of imagine multiplying it by f. Really, it's like an operator taking in this function, and it's going to give you another function.

It's like you take this triangle and you put an f in front of it, and you can imagine like this part gets multiplied, quote unquote, multiplied with f. This part gets, quote unquote, multiplied with f. But really, you're just saying you take the partial derivative with respect to x and then with y, and on and on.

The reason for doing this is this symbol comes up a lot in other contexts. There are two other operators that you're going to learn about called the divergence and the curl. I'll get to those later, all in due time. But it's useful to think about this vector-ish thing of partial derivatives.

I mean, one weird thing about it, you could say, okay, so this nabla symbol is a vector of partial derivative operators; what's its dimension? You know, it's like how many dimensions you got. Because if you had a three-dimensional function, that would mean that you should treat this like it's got three different operators as part of it.

And you know, I'd kind of finish this off down here, and if you had something that was 100-dimensional, it would have 100 dimension, 100 different operators in it, and that's fine. It's really just, again, kind of a memory trick. So with that, that's how you compute the gradient. Not too much to it; it's pretty much just partial derivatives, but you smack them into a vector. Where it gets fun and where it gets interesting is with the geometric interpretation. I'll get to that in the next couple videos. It's also a super important tool for something called the directional derivative, so you've got a lot of fun stuff ahead.

More Articles

View All
"Why I Started MINING My Own BITCOIN!" (Millionaire Bitcoin Advice) | Kevin O'Leary
We don’t think you should own coin made in China. I said the only way I can possibly not own kind of China coin is to make it myself. So, new game plan: every coin I’m going to own, I’m going to know where it came from, when it was created, and it’s goin…
How Much Does The Internet Weigh?
Hey, Vsauce. Michael here. And this strawberry weighs about 50 grams, which according to Russell Seitz also happens to be the weight of the entire Internet. What does that mean? I mean, the Internet is a gigantic place and how do you measure information? …
Geometric constructions: parallel line | Congruence | High school geometry | Khan Academy
Let’s say that we have a line. I’m drawing it right over there, and our goal is to construct another line that is parallel to this line that goes through this point. How would we do that? Well, the way that we can approach it is by creating what will even…
Learning the Art of Traditional Tattooing on the Cook Islands | Short Film Showcase
The tools belong to the poor islanders. Tarter Tao was current in the islands. It’s just that colonialism had wiped it out. There’s not anyone else here doing traditional. The revival here started out from tattoo machine. The machine is not connected to …
Mr. Freeman, part 05
Dear friends, citizens of free democratic countries! I, the most popular long-lived viral ad, congratulate you with the New Year! What are you looking at?.. Aaah… Message! The passing year was long and full of events. There was everything - happiness and…
How we make Slow Motion Sounds (Part 2) - Smarter Every Day 185
All right, I’m Destin. Welcome back to Smarter Every Day. This is part 2 in our slow motion sound series. We’re recording stuff with the Phantom, and we’re going to just play it back and show you how to create those sounds. There’s something just inherent…