yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Gyroscopic Precession


3m read
·Nov 10, 2024

Hey everyone, it's me, Derek from the channel Veritasium. I've been following this series by Destin on Smarter Every Day about helicopters, and gyroscopic precession is just one of those things that still blows my mind, as it did Destin. So, I'm here at the University of Sydney, my old stomping grounds. I'm going to borrow some of their lecture demo equipment to hopefully teach you a bit about how gyroscopic precession works.

The first thing I need to do is talk about vectors because a lot of things in physics are vectors. That means they have direction. So, an example would be momentum and force; those are two examples of some pretty common vectors. So if I have a cart moving along here, it has some momentum in that direction. And, um, if I apply a force to it, I can change its momentum.

So, for example, if I push it to the right, then its momentum will increase to the right. It all makes a lot of sense. Well, there's a similar statement we could make about rotating bodies, which is that a torque increases the angular momentum of an object in the direction of that torque. So let's try to figure out those terms. If I apply a force down on this side of the wheel, I create a torque.

Now torque is force times the distance from the rotating axis; you could call it R. So torque is the force applied times the radius away from the turning axis. Now, what's the direction of that torque? Well, we actually use a right-hand rule to define this. And so what you do is you put your fingers in the direction of the radius from the turning axis and curl them in the direction of the force, and your thumb points in the direction of the torque.

So the torque is actually out this way, at 90° to the force. The force is down that way, but the torque vector is actually pointing out this way. So the angular momentum of this wheel is being increased in that direction. So, the more I apply this torque, the more I increase the angular momentum of the wheel in the direction of the torque. So I'm making this wheel have a very large angular momentum out towards the camera, out towards you.

Now, before I go any further, let's have a look at this setup that I've got. I have a wheel here hanging from only one side by this rope, and so right now there's actually a torque on the whole system. If I let go, because the weight of this wheel is pulling down and that force is applied at this distance away from its pivoting point, there. So if I let go, well, it does exactly what you'd expect. The wheel swings down this way, but I want to see that as an example of rotational motion.

There's a torque which is pointing out this way, which is trying to increase the angular momentum of the system in that direction. Now, angular momentum in that direction requires that the whole system starts swinging anticlockwise, and so that is what happens. But what happens if I only let go after I've already spun up the bicycle wheel? Well, in that case, the bicycle wheel would already have angular momentum this way, and so a torque pushing that way actually swings this angular momentum round that way.

Okay, so let me try to get the wheel spinning and make it work. Come on! Look at that! It's rotating as we predicted! See the angular momentum vector is pointing out this way, but torque is pushing it this way. So, angular momentum, torque, and torque is pushing that angular momentum vector around. Except not for long because this appears to be quite a frictional wheel.

So, check out Destin's other videos about helicopter physics, and then come check out my channel, Veritasium, where you can find more like this, except I don't often nearly get my head cut off by a bicycle wheel!

More Articles

View All
Naive Optimism Will Change Your Life
Imagine you’re an Olympic athlete; you could be a track star, a distant swimmer, or a figure skater. Whatever sport you choose, chances are you’ve been training for it since the moment you could walk. You have your gym routine down to a science. You’ve hi…
A Man of the World | Podcast | Overheard at National Geographic
Tell me about how did you come to dive under the North Pole. One day I’m sitting in my office so long about four o’clock, I’m bored, and the phone rings. In 1979, Gil Grosvenor was the editor of National Geographic magazine. In that job, you don’t stay bo…
Investigative Journalist Mariana van Zeller Reacts to Fan Comments | National Geographic
Hi, I’m Mariana Van Zeller, and today, I’ll be reading through your YouTube comments about my show ‘Trafficked: Underworlds.’ Okay, let’s do it! One of the best comments I get is people saying I have ‘big balls.’ So you kill people? Yeah. They pay you to…
Traveling Back in Time? | StarTalk
If I had a time machine, I think I’d go back to when a Mars-sized protoplanet sideswiped Earth in the early solar system, sideswiping our crust, casting billions of tons of rock into orbit around the Earth, which then coalesced to form our Moon. I want, I…
Safari Live - Day 246 | National Geographic
This program features live coverage of an African safari and may include animal kills and carcasses. Viewer discretion is advised. Oh, look at that! I have got one of the tallest animals in the world, and this animal is trying to feed from one of the lon…
Don’t Feel Harmed, And You Haven’t Been | The Philosophy of Marcus Aurelius
Marcus Aurelius pointed out that regardless of the severity of circumstances, there’s always a choice in how we judge them. “Choose not to be harmed—and you won’t feel harmed. Don’t feel harmed—and you haven’t been,” he stated. Marcus’ instruction sounds…