yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Don’t fall into the determinism trap. Everything is, in fact, random | Lee Cronin


3m read
·Nov 3, 2024

  • At the beginning of the Universe, current physics would point to a Big Bang, right? And from that Big Bang, the rest of the Universe unfolds. I guess we went from an expanding universe to matter being formed and crystallized, if you like, forming hydrogen.

Hydrogen comes together; under gravity, it produces stars. Stars produce galaxies, planets get produced by exploding stars, and fast forward, life emerges on the planets, and we have technology and human beings and people lobbing stuff into space. Quantum physics basically shows you that the Universe is actually quite random.

Those random processes can, if you like, be harnessed in the process of selection. So quantum physics gives you, like, literally the possibility space for having fluctuations here, there, and everywhere, 'cause you're looking in a probability; it's like a field. What happens is, those objects are produced; if they can then start to act on themselves or on other simple objects produced in the same environment, that's when the process starts.

So you have this quantum foam, if you like, of randomness and then this ability for copying to occur, and that copying, whether the copies are allowed to live or not, is selection. And if the copies are allowed to live because the environment doesn't kill them, then that's evolution.

And if you like, the quantum nature of the Universe actually generates the random fuel for this to occur. So it's kind of insane, in that, the way you look at it is: the Universe only looks deterministic because evolution has occurred. The Universe is, in fact, random and the processes which look non-random is because evolution has made them, through error correction, to become more and more secure.

Random events have no kind of relationship to the past, right? They're just random. Whereas when you get deterministic events, they are determined by previous events. And the more determined something is, the less error it is. I flick a coin. As I flick it, heads. I flick it again, tails. Heads, tails, heads, tails.

If I flick a coin and I flick it, I go, "Heads, okay, great." Flick it again, I get heads again. The more heads I flick, the more I know it's determined because it's a weighted coin that's weighted to give heads and not tails. Whereas in a random system, I would just get an even distribution between heads and tails.

So how does something come from nothing is actually much simpler than I thought possible. In that, simply, you have this random processes and then occasionally the random processes, let's say, a simple molecule could pop into existence and then it will just die. But those simple molecules that pop into existence can actually copy themselves, based upon the stuff around them; grow in complexity.

So you have this history that evolves literally in front of your eyes. So how does something come from nothing? One answer: Replication. How did that thing then become more sophisticated? One answer: Evolution. How did that thing then occur in the environment? One answer: Selection.

More Articles

View All
Warren Buffett is Selling His Largest Stock.
Have you or your investment manager’s views of the economics of Apple’s business or its attractiveness as an investment changed since Berkshire first invested in 2016? Here we go, everyone! Buffett is back, making headlines, and this was a big one: Warre…
Getting Fired | Why 20% Of Workers Could Lose Their Job
What’s up you guys? It’s Graham here. So are you ready to make a lot of money? Because we’ve got some incredible news: unemployment is officially at its lowest level since prior to the pandemic. Wages are rising at the fastest pace in a decade, and wait, …
Worked example: Derivatives of sin(x) and cos(x) | Derivative rules | AP Calculus AB | Khan Academy
What we want to do is find the derivative of this G of X. At first, it could look intimidating. We have a s of X here, we have a cosine of X, we have this crazy expression here, we have a pi over cube root of x. We’re squaring the whole thing, and at firs…
Female Founders Conference - Mountain View
Right now that you all know each other, I’d like to introduce our first speaker. Okay, I would like to welcome our first speaker, Phaedra Ellis Lumpkins, who’s the founder and CEO of Promise. Now, Promise went through the winter 2018 batch of YC and is wo…
BLOW YOUR MIND!
Hey Vsauce, I’ve got a quick and fun video for you today because I made a mistake. Last week on Episode 10 of ING, I showed a picture and I said, “cat and dogs cooperating.” However, if you look at the picture for more than a second, you can tell that it’…
Amelia Earhart Part II: The Lady’s Legacy | Podcast | Overheard at National Geographic
I am Amelia Earhart. I am a famous pilot. More than 80 years after Amelia Earhart disappeared, she still occupies a place in our imaginations. As a girl and woman, people told me I would not be able to do things I wanted to do, like crying. For this eight…