yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Basic derivative rules (Part 2) | Derivative rules | AP Calculus AB | Khan Academy


4m read
·Nov 11, 2024

In the last video, we introduced you to the derivative property right over here: that if my function is equal to some constant, then the derivative is going to be zero at any X. We made a graphical argument, and we also used the definition of limits to feel good about that. Now, let's give a few more of these properties, and these are core properties. As you go throughout the rest of your calculus life and career, you will be using some combination of these properties to find derivatives. So it's good to know about them and then to feel good that they're actually true.

The second one is, if my function f of X is equal to some constant times another function G of X, well then the derivative of f of X is going to be equal to that same constant. Let me do it: that same constant times the derivative of G of X. Once again, we could make a graphical argument for why that is true; this is going to multiply. The slope is one way to think about it, but it's easier to make an algebraic argument. Just using, frankly, we could use either one of these definitions for the derivative. I'll use the one on the right because it feels more general. Although you could say, well this is true for any X, I’ll just use the one on the right.

So if we want to find F prime of X, using this definition, we know—oops, my pen doesn't work! F prime of X is going to be equal to the limit as H approaches 0 of f of X plus h minus f of X, all of that over H. Well, what is f of X plus h? So this is the limit as H approaches 0 of f of X plus h, which is K times G of X plus h minus f of X. Well, that's just K G of X. K G of X, all of that over H.

Then you can factor the K out. This is going to be equal to the limit as H approaches 0 of K times G of X plus h minus G of X, all of that over H. All I did was factor that K out, and we know from our limit properties that this is the same thing as K times the limit as H approaches 0 of G of X plus h minus G of X, all of that over H. And, of course, all of this business right over there—that is just G prime of X. So this is equal to K times G prime of X.

I know what you might be thinking: well hey, this feels like it was probably going to be true, so I just assumed it was true. But you can't just assume that. I will say, sometimes you can, you know when you're first trying to get your head around it, you can tell how this seems like a reasonable thing. But in math, we like to really know that it is true; otherwise, we will build all sorts of conclusions based on unsound foundations. This allows us to ensure that, look, this is something that we can do. So it's good to go through what might feel like a little bit of work to get to this conclusion.

Now let’s do the third property. The third property is the idea that if I have some function that’s the sum or difference of two other functions G of X and, let’s see, I'm using H a lot. So, let’s say, I don't know, J of X—I don’t know, J. Oh yes, sure, why not, J. You don’t see a lot of J of X's out there. Well then, F prime of X is going to be equal to G prime of X plus J prime of X. This would also have been true if instead of being a positive here, this was a negative, or if this instead of addition, if this was subtraction. If it’s the sum or difference of two functions, then your derivative is going to be the sum or the difference of their derivatives.

Once again, we can just go to the limit, the definition of f prime of X. So, f prime of X is going to be equal to the limit as H approaches 0 of f of X plus h. But what is f of X plus h? Well, that's G of X plus h plus J of X plus h. So, that's f of X plus h minus f of X. So f of X is G of X plus J of X. Notice this is f of X plus h minus f of X. We're going to put all of that over H.

So we can put all of that over H. Well, what is that equal to? Well, we can just rearrange what we see on top here. This is equal to the limit as H approaches 0. Well, let’s see all the mentions of G of X. I'm going to put up front: G of X plus h minus G of X plus J of X plus h minus J of X. And then all of that I could write like this: all of that over H or I could—that's the same thing as this over H plus that over H.

Once again, we know from our limit properties that that is the exact same thing as the limit as H approaches 0 of G of X plus h minus G of X, all of that over H plus the limit as H approaches 0 of J of X plus h minus J of X, all of that over H. And this right over here—that is the definition of G prime of X. And this right over here is J prime of X. And we're done!

If this instead of a positive, if this was instead of addition, if this was subtraction, well then that subtraction would carry through, and then instead of addition here, we would have subtraction. So hopefully, this makes you feel good about these properties. The properties themselves are somewhat straightforward; you could probably guess at them, but it's nice to use the definition of our derivatives to actually feel that they are very good conclusions to make.

More Articles

View All
Tastes a Little "Sprucy" | Life Below Zero
I’ve always got a lot more to do than I have time to do. Not necessarily just work that has to be done, but things I want to see, things I want to learn about. Didn’t find any Caribou out there, but I was lucky enough to get a porcupine. I’ve eaten muskr…
THE END OF CREDIT SCORES | Major Changes Explained
What’s up, Graham? It’s guys here. So, as I’m sure most of you are aware, one of the most important aspects of personal finance, building wealth, and saving a ton of money is your credit score. Those three numbers can very much dictate whether or not you …
Analyzing mosaic plots | Exploring two-variable data | AP Statistics | Khan Academy
We’re told that administrators at a school are considering a policy change. They survey a group of students, staff members, and parents about whether or not they agree with the new policy. The following mosaic plot summarizes their results. Which of the f…
Example: Analyzing the difference in distributions | Random variables | AP Statistics | Khan Academy
Suppose that men have a mean height of 178 centimeters, with a standard deviation of 8 centimeters. Women have a mean height of 170 centimeters, with a standard deviation of 6 centimeters. The male and female heights are each normally distributed. We inde…
Warren Buffett Warns About Diversifying Your Portfolio
Hey everyone! In this video, we are going to listen to Buffett describe why he recommends serious and knowledgeable investors should ignore conventional wisdom and purposely have a concentrated portfolio of stocks. Make sure to stick around to the end be…
The Freaky Truth Of 1¢ Shiba Inu
What’s up, Grandma’s guys? Here, so I’ll admit I was not planning on making this video. But after getting hundreds of comments, DMs, emails, letters, and smoke signals asking for me to talk about the latest investment craze of Shiba Inu, I had to take a l…