yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Basic derivative rules (Part 2) | Derivative rules | AP Calculus AB | Khan Academy


4m read
·Nov 11, 2024

In the last video, we introduced you to the derivative property right over here: that if my function is equal to some constant, then the derivative is going to be zero at any X. We made a graphical argument, and we also used the definition of limits to feel good about that. Now, let's give a few more of these properties, and these are core properties. As you go throughout the rest of your calculus life and career, you will be using some combination of these properties to find derivatives. So it's good to know about them and then to feel good that they're actually true.

The second one is, if my function f of X is equal to some constant times another function G of X, well then the derivative of f of X is going to be equal to that same constant. Let me do it: that same constant times the derivative of G of X. Once again, we could make a graphical argument for why that is true; this is going to multiply. The slope is one way to think about it, but it's easier to make an algebraic argument. Just using, frankly, we could use either one of these definitions for the derivative. I'll use the one on the right because it feels more general. Although you could say, well this is true for any X, I’ll just use the one on the right.

So if we want to find F prime of X, using this definition, we know—oops, my pen doesn't work! F prime of X is going to be equal to the limit as H approaches 0 of f of X plus h minus f of X, all of that over H. Well, what is f of X plus h? So this is the limit as H approaches 0 of f of X plus h, which is K times G of X plus h minus f of X. Well, that's just K G of X. K G of X, all of that over H.

Then you can factor the K out. This is going to be equal to the limit as H approaches 0 of K times G of X plus h minus G of X, all of that over H. All I did was factor that K out, and we know from our limit properties that this is the same thing as K times the limit as H approaches 0 of G of X plus h minus G of X, all of that over H. And, of course, all of this business right over there—that is just G prime of X. So this is equal to K times G prime of X.

I know what you might be thinking: well hey, this feels like it was probably going to be true, so I just assumed it was true. But you can't just assume that. I will say, sometimes you can, you know when you're first trying to get your head around it, you can tell how this seems like a reasonable thing. But in math, we like to really know that it is true; otherwise, we will build all sorts of conclusions based on unsound foundations. This allows us to ensure that, look, this is something that we can do. So it's good to go through what might feel like a little bit of work to get to this conclusion.

Now let’s do the third property. The third property is the idea that if I have some function that’s the sum or difference of two other functions G of X and, let’s see, I'm using H a lot. So, let’s say, I don't know, J of X—I don’t know, J. Oh yes, sure, why not, J. You don’t see a lot of J of X's out there. Well then, F prime of X is going to be equal to G prime of X plus J prime of X. This would also have been true if instead of being a positive here, this was a negative, or if this instead of addition, if this was subtraction. If it’s the sum or difference of two functions, then your derivative is going to be the sum or the difference of their derivatives.

Once again, we can just go to the limit, the definition of f prime of X. So, f prime of X is going to be equal to the limit as H approaches 0 of f of X plus h. But what is f of X plus h? Well, that's G of X plus h plus J of X plus h. So, that's f of X plus h minus f of X. So f of X is G of X plus J of X. Notice this is f of X plus h minus f of X. We're going to put all of that over H.

So we can put all of that over H. Well, what is that equal to? Well, we can just rearrange what we see on top here. This is equal to the limit as H approaches 0. Well, let’s see all the mentions of G of X. I'm going to put up front: G of X plus h minus G of X plus J of X plus h minus J of X. And then all of that I could write like this: all of that over H or I could—that's the same thing as this over H plus that over H.

Once again, we know from our limit properties that that is the exact same thing as the limit as H approaches 0 of G of X plus h minus G of X, all of that over H plus the limit as H approaches 0 of J of X plus h minus J of X, all of that over H. And this right over here—that is the definition of G prime of X. And this right over here is J prime of X. And we're done!

If this instead of a positive, if this was instead of addition, if this was subtraction, well then that subtraction would carry through, and then instead of addition here, we would have subtraction. So hopefully, this makes you feel good about these properties. The properties themselves are somewhat straightforward; you could probably guess at them, but it's nice to use the definition of our derivatives to actually feel that they are very good conclusions to make.

More Articles

View All
Absorption and reflection | Waves | Middle school physics | Khan Academy
I’m showing you this beautiful picture of snow-capped mountains overlooking this alpine lake because there’s a lot of light moving around. Now we’re going to talk about the different ways that light can interact with different media. But what I’m talking…
Ask Sal Anything! Homeroom Tuesday, September 15
Um, hi everyone. Welcome to, uh, the homeroom live stream. Sal here from Khan Academy. Uh, so we’re gonna have a disappointing guest today; it is myself. So we’re gonna be doing an ask me anything. So if you have questions about literally anything, I hop…
Constructing a Cruise Ship | Making the Disney Wish | Mini Episode 1
We are building the most technologically advanced, the most beautiful cruise ships ever. What the Disney Wish is the first of its kind, never been done before. So how do you build a Disney Wish? It’s a first-in-class ship, so you start with a white piece…
Peter Lynch: How to Invest Like a Pro (rare clip)
The price of a stock will follow the direction of earnings in almost every case. You can generally state if a company’s earnings go up sharply, the stock’s going to go up. If earnings go from very poor to mediocre, the stock’s probably going to rise. If t…
15 Secrets Only Billionaires Know
As of 2023, there are 3,112 billionaires in the world. The billionaire perspective on life is quite different from anything you’ve ever experienced, and it’ll definitely go against many of the things you believe. Here are 15 secrets only billionaires know…
Le Chȃtelier’s principle: Changing temperature | Equilibrium | AP Chemistry | Khan Academy
Le Chatelier’s principle says if a stress is applied to a reaction at equilibrium, the net reaction goes in the direction that relieves the stress. One possible stress is to change the temperature of the reaction at equilibrium. As an example, let’s look …