yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Multiplying 10s | Math | 4th grade | Khan Academy


3m read
·Nov 11, 2024

Let's multiply 40 times 70.

So, 40 times we have the number 70.

So, we could actually list that out, the number 70, 40 different times and add it up, but that's clearly a lot of computation to do, and there's got to be a faster way.

So, another way is to stick with multiplication but see if we can break these numbers up, this 40 and this 70.

Decompose them, break them up in some way to get numbers that might be a little easier to multiply with.

For me, multiplying by 10 is the easiest number because I know the pattern to add a zero.

So, I'm going to break up 40 and say instead of forty, four times ten.

Four times ten and forty are equivalent; they're the same thing.

So, I can replace the forty with a four times ten.

And then, for my seventy, same thing.

I can break this up and write seven times ten, seven times ten.

So, these two expressions, forty times seventy and four times ten times seven times ten, are equal; they're equivalent.

So, they'll have the same solution, but for me, this one down here is simpler to work out because of these times tens.

So, I'll solve this one knowing that I'll get the same solution as I would have for this top expression.

What we can do is we can reorder these numbers in a different order to again continue making this question easier for us to solve.

Because in multiplication, the order doesn't matter.

If we have 5 times two, for example, that would be the same as two times five; they're both ten.

Five twos or two fives, either way, it's ten.

So, we can change the order of the numbers without changing the answer.

So again, we're going to change our expression a little bit, but what we're not going to change is the solution.

So, I'm going to put my one-digit numbers first: 4 times 7, and then I'll put the two-digit numbers, the tens times ten and the other times ten.

So, we have all the same factors, all the same numbers in both of these expressions; they've just been reordered.

And now I'll solve going across.

4 times 7 is 28, and then we have 28 times 10 and times another 10.

Well, the pattern for times 10 that we know is when we multiply a whole number like 28 times 10, we will add a 0 to the end.

One 0 for that 0 in 10 because 28 times 10 is 28 tens.

28 tens or 280.

And that multiplied, 28 times 10.

And then if we multiply by this other 10, well, we have to add another zero.

Multiplying by 10 adds a zero, so if we multiply by two tens, we add two zeros.

So, 28 times 10 times 10 is 2800, which means that this original expression we had, forty times seventy, also has a solution of twenty-eight hundred or two thousand eight hundred.

Let's try another example where we're multiplying tens like this.

Let's try, let's do something like, let's say maybe 90 times about 30.

90 times 30.

So, the first thing I'm going to do is break up these numbers so that I have tens, because again for me, tens are easier to multiply the numbers like 90 and 30.

So, for 90 I'll write 9 times 10, and for 30 I'll write 3 times 10.

The expressions are equivalent; we've just written it in another way.

And now I'll reorder these numbers to put the one-digit numbers first: so nine times three, and then I'll put the tens times 10 times 10, because we need to have all the same numbers, even if we change the order.

So we have the 9, 3, the first 10, and the second 10.

And now finally, we multiply.

9 times 3 is 27.

27 times 10 will be 27 tens or 27 with a zero on the end, and 270 times 10 will be 270 tens or 270 with a zero on the end.

So, going back to the original question, 90 times 30 is equal to 27 hundred or 2,700.

More Articles

View All
Adding fractions with unlike denominators introduction
In this video, we’re gonna try to figure out what one-half plus one-third is equal to. And like always, I encourage you to pause this video and try to figure it out on your own. All right, now let’s work through this together, and it might be helpful to …
Introducing: Khan Academy Kids!
Hi everyone, Sal here with my three-year-old son Azad, and we’re excited to announce the launch of Khan Academy Kids, which is designed to take students like Azad, ages two to five, to become lifelong learners. Hi friends, welcome to my room! Kids love t…
Identifying graph for exponential
All right, we are asked to choose the graph of the function, and the function is f of x equal to 2 * 3^x. We have three choices here, so pause this video and see if you can determine which of these three graphs actually is the graph of f of x. All right,…
Can the US avoid the End of an Empire?
Is there a political solution in the US to avoid the end of Empire, or is it a function of physics? I think this is a big part of, like, Sax’s point of view that there’s a solution; we need to change these people. Or are there too many, call it, conflatin…
The Deep Meaning Of Yin & Yang
All information whatsoever can be translated into terms of yang and yin. Alan Watts. The concept of Yin & Yang lies at the basis of Taoist philosophy. It makes a lot of appearances in popular and consumer culture, representing things like balance and…
Culture with Brian Chesky and Alfred Lin (How to Start a Startup 2014: Lecture 10)
The main stage is going to be with Brian when he comes up and talks about how he built the Airbnb culture. So you’re here, you’ve been following the presentations and now you know how to get started. You built the team, you started to sort of build your p…