yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Multiplying 10s | Math | 4th grade | Khan Academy


3m read
·Nov 11, 2024

Let's multiply 40 times 70.

So, 40 times we have the number 70.

So, we could actually list that out, the number 70, 40 different times and add it up, but that's clearly a lot of computation to do, and there's got to be a faster way.

So, another way is to stick with multiplication but see if we can break these numbers up, this 40 and this 70.

Decompose them, break them up in some way to get numbers that might be a little easier to multiply with.

For me, multiplying by 10 is the easiest number because I know the pattern to add a zero.

So, I'm going to break up 40 and say instead of forty, four times ten.

Four times ten and forty are equivalent; they're the same thing.

So, I can replace the forty with a four times ten.

And then, for my seventy, same thing.

I can break this up and write seven times ten, seven times ten.

So, these two expressions, forty times seventy and four times ten times seven times ten, are equal; they're equivalent.

So, they'll have the same solution, but for me, this one down here is simpler to work out because of these times tens.

So, I'll solve this one knowing that I'll get the same solution as I would have for this top expression.

What we can do is we can reorder these numbers in a different order to again continue making this question easier for us to solve.

Because in multiplication, the order doesn't matter.

If we have 5 times two, for example, that would be the same as two times five; they're both ten.

Five twos or two fives, either way, it's ten.

So, we can change the order of the numbers without changing the answer.

So again, we're going to change our expression a little bit, but what we're not going to change is the solution.

So, I'm going to put my one-digit numbers first: 4 times 7, and then I'll put the two-digit numbers, the tens times ten and the other times ten.

So, we have all the same factors, all the same numbers in both of these expressions; they've just been reordered.

And now I'll solve going across.

4 times 7 is 28, and then we have 28 times 10 and times another 10.

Well, the pattern for times 10 that we know is when we multiply a whole number like 28 times 10, we will add a 0 to the end.

One 0 for that 0 in 10 because 28 times 10 is 28 tens.

28 tens or 280.

And that multiplied, 28 times 10.

And then if we multiply by this other 10, well, we have to add another zero.

Multiplying by 10 adds a zero, so if we multiply by two tens, we add two zeros.

So, 28 times 10 times 10 is 2800, which means that this original expression we had, forty times seventy, also has a solution of twenty-eight hundred or two thousand eight hundred.

Let's try another example where we're multiplying tens like this.

Let's try, let's do something like, let's say maybe 90 times about 30.

90 times 30.

So, the first thing I'm going to do is break up these numbers so that I have tens, because again for me, tens are easier to multiply the numbers like 90 and 30.

So, for 90 I'll write 9 times 10, and for 30 I'll write 3 times 10.

The expressions are equivalent; we've just written it in another way.

And now I'll reorder these numbers to put the one-digit numbers first: so nine times three, and then I'll put the tens times 10 times 10, because we need to have all the same numbers, even if we change the order.

So we have the 9, 3, the first 10, and the second 10.

And now finally, we multiply.

9 times 3 is 27.

27 times 10 will be 27 tens or 27 with a zero on the end, and 270 times 10 will be 270 tens or 270 with a zero on the end.

So, going back to the original question, 90 times 30 is equal to 27 hundred or 2,700.

More Articles

View All
Deep Thoughts with Neil deGrasse Tyson | StarTalk
We’ve known as educators that astrophysics can be a gateway science to other sciences. So I submit to you whether or not you embrace the universe because you’re enchanted by it. I can say that in a free capitalist democracy, innovations in science, techn…
Stop Caring About What Isn't Yours: Epictetus’ Lessons from My Novel
Stoic philosopher Epictetus didn’t sugarcoat anything. He was direct and told the listener exactly how it was – at least, from the Stoic perspective. His no-nonsense approach, which becomes apparent when reading what’s left of his lectures, is why I love …
Studying the Dry Valleys of Antarctica | Continent 7: Antarctica
[Music] These systems are very unique, and as things change climate-wise, they’re going to change and could change irreversibly. The Dry Valleys are very similar to Mars’ environment. I mean, it’s incredible. All of the microbial life on the continent has…
Stock Buyback Scams
Some finance junkies are thinking, and what about stock buybacks? Public companies have returned hundreds of billions of dollars to investors through buybacks. The critical word that is missing from their vocabulary and calculation is dilution: the additi…
2015 AP Chemistry free response 7 | Thermodynamics | Chemistry | Khan Academy
Aluminum metal can be recycled from scrap metal by melting the metal to evaporate impurities. Calculate the amount of heat needed to purify one mole of aluminum originally at 298 Kelvin by melting it. The melting point of aluminum is 933 Kelvin. The molar…
Shifting functions introduction | Transformations of functions | Algebra 2 | Khan Academy
So I am here at desmos.com, which is an online graphing calculator. The goal of this video is to explore how shifts in functions happen. How do things shift to the right or left? Or how do they shift up and down? What we’re going to start off doing is ju…