yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

This Book Changed the Way I Think


2m read
·Nov 3, 2024

Processing might take a few minutes. Refresh later.

I was very pleasantly surprised a couple of years back that I reopened an old book which I had read, or I thought I'd read, about a decade ago called The Beginning of Infinity by David Deutsch. Sometimes you read a book and it makes a difference right away. Sometimes you read a book and you don't understand it; then you read it later, at the right time, and it makes a difference.

This time when I reopened this book, I went through it much more carefully than I had in the past—meticulously—rather than reading it to read it and to say I was done reading it. I read it to understand the concepts and the topics and stopped at every point where something was new. It completely started reforming my worldview. It changed the way that I think, and I would credit this book as being probably the only book in the last decade, except maybe a few of Nasim Taleb's works and maybe one or two other scattered books, that I feel made me smarter.

They literally expanded the way that I think. They expanded not just the repertoire of my knowledge, but the repertoire of my reasoning. People throw around words like mental models a lot, and I find most mental models not worth reading or thinking about or listening to because I find them trivial. However, the mental models that came out of The Beginning of Infinity are transformational because they very convincingly completely change the way that you look at what is true and what is not.

Karl Popper laid out the theory of what is scientific and what is not, what is a good explanation and what is not. What Deutsch does is expand on that dramatically in The Beginning of Infinity, but even that is to do it a disservice. The wide-ranging nature of what he covers in The Beginning of Infinity is incredible. He goes from the theory of knowledge, which goes by the fancy word epistemology, all the way to quantum mechanics and physics and multiverse theory, to infinity and mathematics, to the reach of what is knowable and what is not knowable, universal explanations, the theory of computation, what is beauty, what systems of politics work better, and how to raise your children. These are all-encompassing, long-range philosophical ideas.

More Articles

View All
Why Ocean Exploration is so Important
The ocean is obviously our biggest and most important natural resource. Consider that it’s twice the size of all continents combined, and it’s almost totally unexplored. It’s thrilling to be able to explore it. So, I’m on a mission to make you excited, m…
Warren Buffett: What Most Investors Don't Understand About Risk
Can you please elaborate your views on risk? You clearly aren’t a fan of relying on statistical probabilities, and you highlight the need for 20 billion dollars in cash to feel comfortable. Why is that the magic number, and has it changed over time? Yeah…
This Great White Shark Is Hangry For Seal | National Geographic
An apex predator of the ocean, this great white is on the hunt for food. What did you expect at a great white video? These massive fish averaged 15 feet long and can weigh up to 5,000 pounds. But you knew that already, didn’t you? I mean, we’ve seen great…
Worked example: Motion problems with derivatives | AP Calculus AB | Khan Academy
A particle moves along the x-axis. The function x of t gives the particle’s position at any time t is greater than or equal to zero, and they give us x of t right over here. What is the particle’s velocity v of t at t is equal to 2? So, pause this video,…
A day in my life in Japan 🇯🇵 Kimono👘 Asakusa⛩ Coming of Age🧧 Yummy foods 🍣
This video is sponsored by Sakurako, an authentic Japanese monthly snack subscription box. If you’re interested in Japanese culture or miss Japan, you’re in the right place. Today, I’ll take you guys along with me, and we’re going to experience the Japane…
Geometric series introduction | Algebra 2 | Khan Academy
In this video, we’re going to study geometric series. To understand that, I’m going to construct a little bit of a table to understand how our money could grow if we keep depositing, let’s say, a thousand dollars a year in a bank account. So, let’s say t…