yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

How do nerves work? - Elliot Krane


3m read
·Nov 9, 2024

How do nerves work? Are nerves simply the wires in the body that conduct electricity, like the wires in the walls of your home or in your computer? This is an analogy often made, but the reality is that nerves have a much more complex job in the body. They are not just the wires, but the cells that are the sensors, detectors of the external and internal world, the transducers that convert information to electrical impulses, the wires that transmit these impulses, the transistors that gate the information and turn up or down the volume- and finally, the activators that take that information and cause it to have an effect on other organs.

Consider this. Your mother gently strokes your forearm and you react with pleasure. Or a spider crawls on your forearm and you startle and slap it off. Or you brush your forearm against a hot rack while removing a cake from the oven and you immediately recoil. Light touch produced pleasure, fear, or pain. How can one kind of cell have so many functions? Nerves are, in fact, bundles of cells called neurons, and each of these neurons is highly specialized to carry nerve impulses, their form of electricity, in response to only one kind of stimulus, and in only one direction.

The nerve impulse starts with a receptor, a specialized part of each nerve, where the electrical impulse begins. One nerve's receptor might be a thermal receptor, designed only to respond to a rapid increase in temperature. Another receptor type is attached to the hairs of the forearm, detecting movement of those hairs, such as when a spider crawls on your skin. Yet another kind of neuron is low-threshold mechanoreceptor, activated by light touch. Each of these neurons then carry their specific information: pain, warning, pleasure. And that information is projected to specific areas of the brain, and that is the electrical impulse.

The inside of a nerve is a fluid that is very rich in the ion potassium. It is 20 times higher than in the fluid outside the nerve while that outside fluid has 10 times more sodium than the inside of a nerve. This imbalance between sodium outside and potassium inside the cell results in the inside of the nerve having a negative electrical charge relative to the outside of the nerve, about equal to -70 or -80 millivolts. This is called the nerve's resting potential.

But in response to that stimulus the nerve is designed to detect, pores in the cell wall near the receptor of the cell open. These pores are specialized protein channels that are designed to let sodium rush into the nerve. The sodium ions rush down their concentration gradient, and when they do, the inside of the nerve becomes more positively charged- about +40 millivolts. While this happens, initially in the nerve right around the receptor, if the change in the nerve's electrical charge is great enough, if it reaches what is called threshold, the nearby sodium ion channels open, and then the ones nearby those, and so on and so forth, so that the positivity spreads along the nerve's membrane to the nerve's cell body and then along the nerve's long, thread-like extension, the axon.

Meanwhile, potassium ion channels open, potassium rushes out of the nerve, and the membrane voltage returns to normal. Actually, overshooting it a bit. And during this overshoot, the nerve is resistant to further depolarization- it is refractory, which prevents the nerve electrical impulse from traveling backwards. Then, ion pumps pump the sodium back out of the nerve, and the potassium back into the nerve, restoring the nerve to its normal resting state.

The end of the nerve, the end of the axon, communicates with the nerve's target. This target will be other nerves in a specialized area of the spinal cord, to be processed and then transmitted up to the brain. Or the nerve's target may be another organ, such as a muscle. When the electrical impulse reaches the end of the nerve, small vesicles, or packets, containing chemical neurotransmitters, are released by the nerve and rapidly interact with the nerve's target. This process is called synaptic transmission, because the connection between the nerve and the next object in the chain is called a synapse. And it is here, in this synapse, that the neuron's electrical information can be modulated, amplified, blocked altogether, or translated to another informational process.

More Articles

View All
Equilibrium, allocative efficiency and total surplus
What we’re going to do in this video is think about the market for chocolate, and we’re going to think about supply and demand curves. But we’re going to get an intuition for them in a slightly different way. In particular, for the demand curve, we will …
Find Your Bliss in Patagonia | National Geographic
Every year, about 100,000 visitors head to a remote location known as the end of the world: it’s Torres del Paine National Park in Chile’s Patagonia region. Here, adventurers find bliss amongst the dramatic terrain that includes glaciers, fjords, and moun…
How Elevators Changed the World | Origins: The Journey of Humankind
For millennia, we wanted buildings that could scrape the sky, touch the heavens. But the heights we hoped to scale were limited by the shortcomings of our construction materials and the weakness of the human body. When steel and concrete came on the scene…
What's in Hand Sanitizer? | Ingredients With George Zaidan (Episode 9)
What’s in here, what’s it do, and can I make it from scratch ingredients? Now, you might already know that the ingredient in here that kills germs is ethyl alcohol—or, as we purist chemists like to call it, ethanol—which is exactly the same molecule that…
Existence theorems intro | Existence theorems | AP Calculus AB | Khan Academy
What we’re going to talk about in this video are three theorems that are sometimes collectively known as existence theorems. So the first that we’re going to talk about is the intermediate value theorem, and the common thread here, all of the existence t…
Why It Actually Might Be 'Survival of the Friendliest' | Nat Geo Explores
[Music] It’s a dog-eat-dog world: winner takes all, survival of the fittest. But is it really? If the biggest and baddest always win, how come there are so many more of them than them? Strength is helpful, but friendliness might actually be the key to evo…