yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

LC natural response example


4m read
·Nov 11, 2024

So, in previous videos, we worked out an expression for the current ( i ) in an LC circuit like this, and what we found was that ( i ) is the square root of capacitance over inductance times the starting voltage ( v_0 ) times sine ( \omega_0 t ).

And ( \omega_0 ) is the natural frequency, and we said that ( \omega_0 ) was equal to the square root of ( \frac{1}{L \times C} ), and ( v_0 ) is the starting voltage on the capacitor. Our original assumption was that ( i ) was ( 0 ) to begin with, and that's the expression for the current.

So, what I want to do now is a specific example, and we'll do that down here. First, I'm going to install a switch into our circuit so that we can add some energy, and it won't go anywhere.

Then, for ( C ), ( C ) is going to be equal to a quarter of a farad, and ( L ) is going to be equal to one henry. All right, and on the capacitor, I'm going to put enough charge to bring this up to ( 10 ) volts before we close the switch.

Then, at ( t = 0 ), we'll close the switch, and what we want to find is, what is ( i(t) )? We have ( L ), we have ( C ), we have a starting voltage, and so now we have everything we need to work out the current. Let's do that.

Okay, so first off, we'll do ( \omega_0 ). ( \omega_0 = \frac{1}{\sqrt{L \times C}} ), so that equals ( \sqrt{\frac{1}{1 \ \text{henry} \times \frac{1}{4} \ \text{farad}}} ), which equals ( \sqrt{4} ) or ( 2 ).

And that's in units of radians per second. That's the natural frequency. We know the natural frequency right here, and now we can work out the rest of it.

So we can just fill in ( i = \sqrt{C} ) which is ( \frac{1}{4} \ \text{farad} ) divided by ( 1 \ \text{henry} ) times ( v_0 ). ( v_0 ) was ( 10 ) volts times sine ( \omega_0 t ). Sine ( \omega_0 ) is ( 2t ).

And finally, ( i = \sqrt{\frac{1}{4}} ) or ( \frac{1}{2} ), so that's ( \frac{1}{2} ) times ( 10 ) is ( 5 ).

Thus, ( i = 5 \sin(2t) ). So for this specific circuit, that's the answer for this current here.

Now, I want to show you what that actually looks like. So this is a plot of ( i(t) = 5 \sin(2t) ) and this is what a sine wave looks like with time.

So, the axes are time in seconds, and this axis goes up to ( 5 ) amperes and then down to ( -5 ) amperes and continues on that way, and it basically goes on forever.

What I want to do next is work out the voltage in the circuit. We didn't talk about the voltage yet. So, I'll sketch the circuit again here. Here's ( L ) and ( C ), and this is the voltage right here—voltage across both guys.

We've already worked out ( i ) and now we want to find ( v ). What's ( v )? That's what we're looking for.

So, we know that ( i = 5 \sin(2t) ), and to find ( v ), one of the easy ways to find ( v ) is to use the inductor equation.

We know that ( v = L \frac{di}{dt} ); that's just the basic inductor ( i , v ) equation, right? Let's see what happens here.

( v = L ) is ( 1 ) times ( \frac{di}{dt} ), so that's ( \frac{d}{dt}(5 \sin(2t)) ). Now, let's take that derivative.

Okay, I'll go up here. ( v = 5 ) comes out of the derivative. The derivative of ( \sin(2t) ) is ( 2 \cos(2t) ).

All right, so our voltage solution is ( 10 \cos(2t) ). So, something interesting just happened here. Let me show you; we started with the current being a sine function, and we eventually took the derivative of that sine function, and now we have a cosine function.

So, we went from sine to cosine for voltage. That means the voltage doesn't look quite exactly like the current.

Okay, let me show you a plot of the voltage. Here's the voltage: this is ( v(t) ) and that we decided was equal to ( 10 \cos(2t) ). It starts at a value of ( 10 ) at ( t = 0 ) and then forms a cosine wave. It goes up and down between plus and minus ( 10 ) volts.

Now let me show you what it looks like when we plot both ( i ) and ( v ) on the same graph, and we can see the timing relationship between them.

So, this is a plot of ( i(t) ) in blue and ( v(t) ) in orange. One of them is a sine wave; the current is a sine wave, and the voltage is a cosine wave.

So, this is what we were going for. This is the natural response of an LC circuit, and we had two specific component values in it. We saw that we came out with both current and voltage looking like sinusoidal waves.

This LC circuit—this is where sine waves come from in electronics. It's pretty cool!

More Articles

View All
How To Invest In Real Estate: The ULTIMATE Guide to Calculating Cashflow (EASY)
What’s up you guys? It’s Graham here. So I realize that this video is very, very, very long overdue because I’ve been making three YouTube videos every single week for over two years, and I’ve yet to make a video about how to analyze the cash flow of a re…
Parallelogram rule for vector addition | Vectors | Precalculus | Khan Academy
[Instructor] So we have two vectors here, vector A and vector B. And what we’re gonna do in this video is think about what it means to add vectors. So, for example, how could we think about what does it mean to take vector A and add to that vector B? And …
Enchanted Soudah: Traditions in the Clouds | Saudi Arabia | National Geographic
Dancing flower men. An ancient stone village. Secrets hidden in Saudi Arabia’s mountains might surprise you. I’m a photojournalist, and ever since I heard about the Rijal [Altib], the flower men of Rijal Almaa, I’ve wanted to come to Soudah Peaks. In the…
Area of quadrilateral with 2 parallel sides
What we’re going to try to do in this video is find the area of this figure. We can see it’s a quadrilateral; it has one, two, three, four sides. We know that this side and this side, that they’re parallel to each other. You can see that they both form ri…
City So Real | Official Trailer
[Music] Hello, yes, I’m doing a documentary right now. Could you please give me a call back? What do I think about the city? I actually love it and hate it. That’s Chicago, though. It’s our one big happy family. The cries and the complaints of the people …
The Video Chat That Existed In The 1870s | How Sci-fi Inspired Science
You hear your phone. You look down, and what do you see? Incoming video call. After you hit the client, think about how commonplace video chats have become. For a long time, the idea of seeing someone from across the world was only in science fiction. So,…