yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

LC natural response example


4m read
·Nov 11, 2024

So, in previous videos, we worked out an expression for the current ( i ) in an LC circuit like this, and what we found was that ( i ) is the square root of capacitance over inductance times the starting voltage ( v_0 ) times sine ( \omega_0 t ).

And ( \omega_0 ) is the natural frequency, and we said that ( \omega_0 ) was equal to the square root of ( \frac{1}{L \times C} ), and ( v_0 ) is the starting voltage on the capacitor. Our original assumption was that ( i ) was ( 0 ) to begin with, and that's the expression for the current.

So, what I want to do now is a specific example, and we'll do that down here. First, I'm going to install a switch into our circuit so that we can add some energy, and it won't go anywhere.

Then, for ( C ), ( C ) is going to be equal to a quarter of a farad, and ( L ) is going to be equal to one henry. All right, and on the capacitor, I'm going to put enough charge to bring this up to ( 10 ) volts before we close the switch.

Then, at ( t = 0 ), we'll close the switch, and what we want to find is, what is ( i(t) )? We have ( L ), we have ( C ), we have a starting voltage, and so now we have everything we need to work out the current. Let's do that.

Okay, so first off, we'll do ( \omega_0 ). ( \omega_0 = \frac{1}{\sqrt{L \times C}} ), so that equals ( \sqrt{\frac{1}{1 \ \text{henry} \times \frac{1}{4} \ \text{farad}}} ), which equals ( \sqrt{4} ) or ( 2 ).

And that's in units of radians per second. That's the natural frequency. We know the natural frequency right here, and now we can work out the rest of it.

So we can just fill in ( i = \sqrt{C} ) which is ( \frac{1}{4} \ \text{farad} ) divided by ( 1 \ \text{henry} ) times ( v_0 ). ( v_0 ) was ( 10 ) volts times sine ( \omega_0 t ). Sine ( \omega_0 ) is ( 2t ).

And finally, ( i = \sqrt{\frac{1}{4}} ) or ( \frac{1}{2} ), so that's ( \frac{1}{2} ) times ( 10 ) is ( 5 ).

Thus, ( i = 5 \sin(2t) ). So for this specific circuit, that's the answer for this current here.

Now, I want to show you what that actually looks like. So this is a plot of ( i(t) = 5 \sin(2t) ) and this is what a sine wave looks like with time.

So, the axes are time in seconds, and this axis goes up to ( 5 ) amperes and then down to ( -5 ) amperes and continues on that way, and it basically goes on forever.

What I want to do next is work out the voltage in the circuit. We didn't talk about the voltage yet. So, I'll sketch the circuit again here. Here's ( L ) and ( C ), and this is the voltage right here—voltage across both guys.

We've already worked out ( i ) and now we want to find ( v ). What's ( v )? That's what we're looking for.

So, we know that ( i = 5 \sin(2t) ), and to find ( v ), one of the easy ways to find ( v ) is to use the inductor equation.

We know that ( v = L \frac{di}{dt} ); that's just the basic inductor ( i , v ) equation, right? Let's see what happens here.

( v = L ) is ( 1 ) times ( \frac{di}{dt} ), so that's ( \frac{d}{dt}(5 \sin(2t)) ). Now, let's take that derivative.

Okay, I'll go up here. ( v = 5 ) comes out of the derivative. The derivative of ( \sin(2t) ) is ( 2 \cos(2t) ).

All right, so our voltage solution is ( 10 \cos(2t) ). So, something interesting just happened here. Let me show you; we started with the current being a sine function, and we eventually took the derivative of that sine function, and now we have a cosine function.

So, we went from sine to cosine for voltage. That means the voltage doesn't look quite exactly like the current.

Okay, let me show you a plot of the voltage. Here's the voltage: this is ( v(t) ) and that we decided was equal to ( 10 \cos(2t) ). It starts at a value of ( 10 ) at ( t = 0 ) and then forms a cosine wave. It goes up and down between plus and minus ( 10 ) volts.

Now let me show you what it looks like when we plot both ( i ) and ( v ) on the same graph, and we can see the timing relationship between them.

So, this is a plot of ( i(t) ) in blue and ( v(t) ) in orange. One of them is a sine wave; the current is a sine wave, and the voltage is a cosine wave.

So, this is what we were going for. This is the natural response of an LC circuit, and we had two specific component values in it. We saw that we came out with both current and voltage looking like sinusoidal waves.

This LC circuit—this is where sine waves come from in electronics. It's pretty cool!

More Articles

View All
Michael Burry's CRAZY Win on Gamestop (Courtesy of Wall Street Bets)
Can’t stop, won’t stop, Gamestop! The following video is an interesting tale of how this guy rode this wave thanks to these guys and somehow got annoyed by it. [Music] Well, it’s highly likely that in the last couple of weeks, Michael Burry has made an …
Ramses, Master of Diplomacy | Lost Treasures of Egypt
[music playing] NARRATOR: On the border with Ancient Nubia, Ramses built another massive monument, the mountain temple of Abu Simbel. Colleen has come here searching for clues about how Ramses’s military skill contributed to the success of his empire. Th…
The Banach–Tarski Paradox
Hey, Vsauce. Michael here. There’s a famous way to seemingly create chocolate out of nothing. Maybe you’ve seen it before. This chocolate bar is 4 squares by 8 squares, but if you cut it like this and then like this and finally like this, you can rearrang…
STOICISM | How To Deal With Insults
For a great part, stoicism teaches you how to reach a peaceful state of mind and being unmoved by things that are not up to you. One of these things are insults, which often lead to the receiver getting hurt, angry, and even resentful. The thing is, what …
Relating unit rate to slope in graphs of proportional relationships | Grade 8 (TX) | Khan Academy
A farmer sold 26 kg of tomatoes for $78. Which graph has a slope that represents the cost of tomatoes in dollars per kilogram? Pause this video, work through this on your own before we do this together. So, if we’re thinking about slope, slope is all ab…
2015 AP Chemistry free response 3f | Chemistry | Khan Academy
The pH of the soft drink is 3.37. After the addition of the potassium sorbate, which species, the sorbic acid or the sorbate ion, has a higher concentration in the soft drink? Justify your answer. So, this is related to the question we’ve been doing beca…