yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

LC natural response example


4m read
·Nov 11, 2024

So, in previous videos, we worked out an expression for the current ( i ) in an LC circuit like this, and what we found was that ( i ) is the square root of capacitance over inductance times the starting voltage ( v_0 ) times sine ( \omega_0 t ).

And ( \omega_0 ) is the natural frequency, and we said that ( \omega_0 ) was equal to the square root of ( \frac{1}{L \times C} ), and ( v_0 ) is the starting voltage on the capacitor. Our original assumption was that ( i ) was ( 0 ) to begin with, and that's the expression for the current.

So, what I want to do now is a specific example, and we'll do that down here. First, I'm going to install a switch into our circuit so that we can add some energy, and it won't go anywhere.

Then, for ( C ), ( C ) is going to be equal to a quarter of a farad, and ( L ) is going to be equal to one henry. All right, and on the capacitor, I'm going to put enough charge to bring this up to ( 10 ) volts before we close the switch.

Then, at ( t = 0 ), we'll close the switch, and what we want to find is, what is ( i(t) )? We have ( L ), we have ( C ), we have a starting voltage, and so now we have everything we need to work out the current. Let's do that.

Okay, so first off, we'll do ( \omega_0 ). ( \omega_0 = \frac{1}{\sqrt{L \times C}} ), so that equals ( \sqrt{\frac{1}{1 \ \text{henry} \times \frac{1}{4} \ \text{farad}}} ), which equals ( \sqrt{4} ) or ( 2 ).

And that's in units of radians per second. That's the natural frequency. We know the natural frequency right here, and now we can work out the rest of it.

So we can just fill in ( i = \sqrt{C} ) which is ( \frac{1}{4} \ \text{farad} ) divided by ( 1 \ \text{henry} ) times ( v_0 ). ( v_0 ) was ( 10 ) volts times sine ( \omega_0 t ). Sine ( \omega_0 ) is ( 2t ).

And finally, ( i = \sqrt{\frac{1}{4}} ) or ( \frac{1}{2} ), so that's ( \frac{1}{2} ) times ( 10 ) is ( 5 ).

Thus, ( i = 5 \sin(2t) ). So for this specific circuit, that's the answer for this current here.

Now, I want to show you what that actually looks like. So this is a plot of ( i(t) = 5 \sin(2t) ) and this is what a sine wave looks like with time.

So, the axes are time in seconds, and this axis goes up to ( 5 ) amperes and then down to ( -5 ) amperes and continues on that way, and it basically goes on forever.

What I want to do next is work out the voltage in the circuit. We didn't talk about the voltage yet. So, I'll sketch the circuit again here. Here's ( L ) and ( C ), and this is the voltage right here—voltage across both guys.

We've already worked out ( i ) and now we want to find ( v ). What's ( v )? That's what we're looking for.

So, we know that ( i = 5 \sin(2t) ), and to find ( v ), one of the easy ways to find ( v ) is to use the inductor equation.

We know that ( v = L \frac{di}{dt} ); that's just the basic inductor ( i , v ) equation, right? Let's see what happens here.

( v = L ) is ( 1 ) times ( \frac{di}{dt} ), so that's ( \frac{d}{dt}(5 \sin(2t)) ). Now, let's take that derivative.

Okay, I'll go up here. ( v = 5 ) comes out of the derivative. The derivative of ( \sin(2t) ) is ( 2 \cos(2t) ).

All right, so our voltage solution is ( 10 \cos(2t) ). So, something interesting just happened here. Let me show you; we started with the current being a sine function, and we eventually took the derivative of that sine function, and now we have a cosine function.

So, we went from sine to cosine for voltage. That means the voltage doesn't look quite exactly like the current.

Okay, let me show you a plot of the voltage. Here's the voltage: this is ( v(t) ) and that we decided was equal to ( 10 \cos(2t) ). It starts at a value of ( 10 ) at ( t = 0 ) and then forms a cosine wave. It goes up and down between plus and minus ( 10 ) volts.

Now let me show you what it looks like when we plot both ( i ) and ( v ) on the same graph, and we can see the timing relationship between them.

So, this is a plot of ( i(t) ) in blue and ( v(t) ) in orange. One of them is a sine wave; the current is a sine wave, and the voltage is a cosine wave.

So, this is what we were going for. This is the natural response of an LC circuit, and we had two specific component values in it. We saw that we came out with both current and voltage looking like sinusoidal waves.

This LC circuit—this is where sine waves come from in electronics. It's pretty cool!

More Articles

View All
How to negotiate with billionaires.
I negotiate with billionaires every day in what I do. Everybody always asks me, “How do you negotiate with a billionaire, a big corporate executive, and things like that?” To tell you the truth, you negotiate with them just like you negotiate with anybod…
Selling Everything - The Next Crash Is Coming
What’s up, Graham? It’s guys here. So, you know the saying, “Buy Low, Sell High.” Well, apparently, while retail traders were celebrating the stock market’s best month since 2020, corporate insiders have been selling their stock at the fastest pace since …
The Bahamas: It's Like Candy | Photographer | National Geographic
[Music] This is like the adventure of a lifetime. When we bought this boat, we basically didn’t know where to start. We could have thrown a dart at a globe and landed anywhere. But it is very difficult not to fall in love with a place like the Bahamas. I…
Mark Zuckerberg at Startup School 2013
You know I came out here earlier and they didn’t clap as loud, so it’s pretty obvious why they were clapping loud this time. That was for you. Um, all right, I don’t have any songs for you. I just came in a few minutes ago, and Jack was here playing a son…
Worked example of a profit maximization problem | Microeconomics | Khan Academy
We’re told corn is used as food and as an input in the production of ethanol and alternative fuel. Assume corn is produced in a perfectly competitive market. Draw correctly labeled side-by-side graphs for the corn market and a representative corn farmer o…
This is the BEST skill you can learn to make more money
What’s up you guys, it’s Graham here. So I’m going to be sharing with you guys the most important thing that you should learn if you want to increase your business and start making more money, and that is learning how to sell. This is one of the most impo…