yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: p-series | Series | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

So we have an infinite series here: one plus one over two to the fifth plus one over three to the fifth, and we just keep on going forever. We could write this as the sum from n equals one to infinity of 1 over n to the 5th power, 1 over n to the 5th power.

Now, you might recognize—notice when n is equal to 1, this is 1 over 1 to the 5th; that's that over there. And we could keep on going. Now you might immediately recognize this as a p series, and a p series has the general form of the sum going from n equals 1 to infinity of 1 over n to the p, where p is a positive value.

So, in this particular case, our p for this p series is equal to five; p is equal to five. Now you might already recognize under which conditions for a p series does it converge or diverge. It's going to converge. It's going to converge when your p is greater than one, which is clearly the case in this scenario right over here. Our p is clearly greater than one.

We would diverge; we would diverge if our p is greater than zero and less than or equal or less than or equal to 1. This would be a divergence. So if this was like 0.9 here, or if this was a, you know, three-fourths, then we would be diverging. So at least for this one, we are convergent.

Let's do another one of these. All right, so here you might again recognize this as a p series. Let me rewrite this infinite sum. So this is the sum from n equals 1 to infinity of 1 over—let's see—we have square root of 2, square root of 3. So you could use this as 2 to the one-half, 3 to the one-half, 4 to the one-half. So it's 1 over n to the one half.

Notice this is when n is equal to one: one over one to the one half is one. One over two to the one half, well that's this right over here, and we keep on going on and on and on. Well, in this case, we still have a p series. We have one over n to some power, and that power is positive, but notice in this case our p falls between zero and one.

So one half is our p, so p for our p series is equal to one-half, and that's between zero and one. Remember, we're divergent—divergent when our p is greater than zero and less than or equal to one, which was clearly the case right over here. So this is going to be divergent.

More Articles

View All
What Is ZIRP And How Did It Poison Startups?
Uhoh, one of the sinkholes, so to speak, that the money could go into is the asset class known as venture capital. And sinkhole it is. [Music] All right. This is Dalton plus Michael, and today we’re going to talk about what is ZERP and why did it mess w…
Beaker Ball Balance Problem
Here is the set up. I have a balance and two identical beakers, which I fill with exactly the same amount of water, except in one of the beakers there is a submerged ping pong ball tethered to the base of the beaker. And in the other there is an identical…
From $100 to $75 Million: Is Bitcoin a good investment?
What’s up you guys, it’s Graham here. So, if you’ve looked at the internet in the last few days, I’m sure you’ve seen an article out there that says if you had bought $100 of Bitcoin 7 years ago, you would have over $75 million today. Bitcoin is a topic t…
How to Walk on Your Hands | Science of Stupid: Ridiculous Fails
To understand the science, we normally end up concentrating on the stupid, but every now and then, we get the chance to study at the feet, or in this case, the hands of a real expert. Meet Kevin from Switzerland. He’s going to try and set a Guinness Worl…
From Summit to Subterranean: Chasing Adventure in San Antonio, Texas | National Geographic
When you’re in the cave, you’re so hyper-focused because there’s no distractions, and so for me, it’s almost meditative. [Music] I started in adventure photography with winter sports. Now I’m here in Texas to find that adventure, but underground. Hi, it…
Kevin Systrom at Startup School SV 2014
Kevin: Thanks a lot for joining us today. Audience: Absolutely! Kevin: Thanks for having me. This is a nice big crowd. Audience: Yeah, this is quite a few people. Kevin: Well, we can just launch right in, of course. I guess you know the crazy thing ab…