yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: p-series | Series | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

So we have an infinite series here: one plus one over two to the fifth plus one over three to the fifth, and we just keep on going forever. We could write this as the sum from n equals one to infinity of 1 over n to the 5th power, 1 over n to the 5th power.

Now, you might recognize—notice when n is equal to 1, this is 1 over 1 to the 5th; that's that over there. And we could keep on going. Now you might immediately recognize this as a p series, and a p series has the general form of the sum going from n equals 1 to infinity of 1 over n to the p, where p is a positive value.

So, in this particular case, our p for this p series is equal to five; p is equal to five. Now you might already recognize under which conditions for a p series does it converge or diverge. It's going to converge. It's going to converge when your p is greater than one, which is clearly the case in this scenario right over here. Our p is clearly greater than one.

We would diverge; we would diverge if our p is greater than zero and less than or equal or less than or equal to 1. This would be a divergence. So if this was like 0.9 here, or if this was a, you know, three-fourths, then we would be diverging. So at least for this one, we are convergent.

Let's do another one of these. All right, so here you might again recognize this as a p series. Let me rewrite this infinite sum. So this is the sum from n equals 1 to infinity of 1 over—let's see—we have square root of 2, square root of 3. So you could use this as 2 to the one-half, 3 to the one-half, 4 to the one-half. So it's 1 over n to the one half.

Notice this is when n is equal to one: one over one to the one half is one. One over two to the one half, well that's this right over here, and we keep on going on and on and on. Well, in this case, we still have a p series. We have one over n to some power, and that power is positive, but notice in this case our p falls between zero and one.

So one half is our p, so p for our p series is equal to one-half, and that's between zero and one. Remember, we're divergent—divergent when our p is greater than zero and less than or equal to one, which was clearly the case right over here. So this is going to be divergent.

More Articles

View All
AK-47 Underwater at 27,450 frames per second (Part 2) - Smarter Every Day 97
Hey, it’s me, Destin. Welcome back to Smarter Every Day! So, I’ve been learning a lot about guns underwater, which is pretty cool. I mean, in the first video, I learned all about what’s happening back here in the action. But the problem is, because of lim…
Slinky Drop Extended
All right, you’ve made your prediction, and we’ve tied a tennis ball to the base of the Slinky. Here, and now we’re going to extend it and drop it, and see what happens to the tennis ball. The heavy weight of the tennis ball is going to stretch the spring…
Aliens Would Visit for Knowledge, Not Resources
I think Stephen Hawking himself said that it was a mistake to broadcast radio waves out into the universe because the aliens are going to be out there, and they’re going to be like conquistadors, and they’re going to want to take over our planet for their…
The aggregate production function and growth | APⓇ Macroeconomics | Khan Academy
In a previous video, we have introduced the idea of an aggregate production function, which is a fancy way for a mathematical model that an economist might use to tie the factors of production in an economy to the actual aggregate output of an economy. Th…
Connecting f, f', and f'' graphically | AP Calculus AB | Khan Academy
We have the graphs of three functions here, and what we know is that one of them is the function f, another is the first derivative of f, and then the third is the second derivative of f. Our goal is to figure out which function is which— which one is f, …
Peek Inside the Strange, Secret World of Bugs | Short Film Showcase
Once upon a time, all of Britain was covered in wild wood, a hunting ground for kings, an ancient home for many beasts. Few places remain where this landscape can now be found. In the New Forest, that world still exists. It is an old world full of life, …