yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: p-series | Series | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

So we have an infinite series here: one plus one over two to the fifth plus one over three to the fifth, and we just keep on going forever. We could write this as the sum from n equals one to infinity of 1 over n to the 5th power, 1 over n to the 5th power.

Now, you might recognize—notice when n is equal to 1, this is 1 over 1 to the 5th; that's that over there. And we could keep on going. Now you might immediately recognize this as a p series, and a p series has the general form of the sum going from n equals 1 to infinity of 1 over n to the p, where p is a positive value.

So, in this particular case, our p for this p series is equal to five; p is equal to five. Now you might already recognize under which conditions for a p series does it converge or diverge. It's going to converge. It's going to converge when your p is greater than one, which is clearly the case in this scenario right over here. Our p is clearly greater than one.

We would diverge; we would diverge if our p is greater than zero and less than or equal or less than or equal to 1. This would be a divergence. So if this was like 0.9 here, or if this was a, you know, three-fourths, then we would be diverging. So at least for this one, we are convergent.

Let's do another one of these. All right, so here you might again recognize this as a p series. Let me rewrite this infinite sum. So this is the sum from n equals 1 to infinity of 1 over—let's see—we have square root of 2, square root of 3. So you could use this as 2 to the one-half, 3 to the one-half, 4 to the one-half. So it's 1 over n to the one half.

Notice this is when n is equal to one: one over one to the one half is one. One over two to the one half, well that's this right over here, and we keep on going on and on and on. Well, in this case, we still have a p series. We have one over n to some power, and that power is positive, but notice in this case our p falls between zero and one.

So one half is our p, so p for our p series is equal to one-half, and that's between zero and one. Remember, we're divergent—divergent when our p is greater than zero and less than or equal to one, which was clearly the case right over here. So this is going to be divergent.

More Articles

View All
Unlocking the Power of Your Mind with Neuralink Technology #Shorts
Neuralink cuts out the middleman and allows input and output directly from your brain to whatever you’re doing on a machine or vice versa. It’s like going from writing using a quill to having a pencil, to having a keyboard, to having Siri, to now potentia…
Lateral & total surface area of rectangular prisms | Grade 8 (TX) | Khan Academy
We’re asked what is the lateral surface area of the rectangular prism and then what is the total surface area of the rectangular prism. Pause this video, have a go at this before we do this together. All right, now let’s first focus on lateral surface ar…
Motion along a curve: finding rate of change | Advanced derivatives | AP Calculus BC | Khan Academy
We’re told that a particle moves along the curve (x^2 y^2 = 16), so that the x-coordinate is changing at a constant rate of -2 units per minute. What is the rate of change, in units per minute, of the particle’s y-coordinate when the particle is at the po…
I f***ed up by not buying this house (the one that got away)
And here I am. I would have been able to either buy it at ninety-six thousand dollars and get free insurance money to fix it up, or I could renegotiate the price, taking it as is, fix it up myself, and probably made, right there, just easily, just right t…
Are Daddy Longlegs Spiders? (Re: 8 Animal Misconceptions Rundown)
In my animal misconceptions video, I casually mentioned that daddy long legs aren’t spiders and received a ton of comments asking for clarification or suggesting that it’s not that simple. So I feel the need to clear things up a bit. But first, a disclaim…
Charlie Munger is selling Alibaba!
If you’ve been following this channel for any amount of time, you know I’m a big believer that one of the best ways to learn about investing is to follow the portfolios of well-respected investors. Whether you are just starting out on your investing journ…