yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: p-series | Series | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

So we have an infinite series here: one plus one over two to the fifth plus one over three to the fifth, and we just keep on going forever. We could write this as the sum from n equals one to infinity of 1 over n to the 5th power, 1 over n to the 5th power.

Now, you might recognize—notice when n is equal to 1, this is 1 over 1 to the 5th; that's that over there. And we could keep on going. Now you might immediately recognize this as a p series, and a p series has the general form of the sum going from n equals 1 to infinity of 1 over n to the p, where p is a positive value.

So, in this particular case, our p for this p series is equal to five; p is equal to five. Now you might already recognize under which conditions for a p series does it converge or diverge. It's going to converge. It's going to converge when your p is greater than one, which is clearly the case in this scenario right over here. Our p is clearly greater than one.

We would diverge; we would diverge if our p is greater than zero and less than or equal or less than or equal to 1. This would be a divergence. So if this was like 0.9 here, or if this was a, you know, three-fourths, then we would be diverging. So at least for this one, we are convergent.

Let's do another one of these. All right, so here you might again recognize this as a p series. Let me rewrite this infinite sum. So this is the sum from n equals 1 to infinity of 1 over—let's see—we have square root of 2, square root of 3. So you could use this as 2 to the one-half, 3 to the one-half, 4 to the one-half. So it's 1 over n to the one half.

Notice this is when n is equal to one: one over one to the one half is one. One over two to the one half, well that's this right over here, and we keep on going on and on and on. Well, in this case, we still have a p series. We have one over n to some power, and that power is positive, but notice in this case our p falls between zero and one.

So one half is our p, so p for our p series is equal to one-half, and that's between zero and one. Remember, we're divergent—divergent when our p is greater than zero and less than or equal to one, which was clearly the case right over here. So this is going to be divergent.

More Articles

View All
4th of July Fireworks Chemistry - Smarter Every Day 14
[Music] Hey, it’s me, Destin. So, uh, welcome to my 4th of July tradition. It’s something I do every year. I’m out here on the Bickering Nag, alone this year. Everybody else had something they had to do because the firework show is late. But anyway, I’m …
How the Kushites Took Over Egypt | Flooded Tombs of the Nile
[tense music] Nuri is one of the most intensive concentrations of pyramids anywhere in the world, across any culture and civilization. [upbeat music] In Sudan, in fact, there are more pyramids than in Egypt. And this is something that people don’t think …
Walking Alone in the Wilderness: A Story of Survival (Part 1) | Nat Geo Live
One day I was sitting in Australia, in a desert. The land was red. I was next to an old man. An old Aboriginal man. And after we gaze at the horizon, after a few minutes, he looks at me and he said, “Hey little one. You be careful.” And I look at him a bi…
Amelia Earhart Part II: The Lady’s Legacy | Podcast | Overheard at National Geographic
I am Amelia Earhart. I am a famous pilot. More than 80 years after Amelia Earhart disappeared, she still occupies a place in our imaginations. As a girl and woman, people told me I would not be able to do things I wanted to do, like crying. For this eight…
We made a Video Game (FISH GAME) - Smarter Every Day 291
Hey, it’s me, Destin. Welcome back to Smarter Every Day. We made a video game. I was supposed to make a video here about, like, “Hey, this is the game, and you can buy it, and you can play it, and it’s awesome.” That was the original idea for this. But th…
Going Inside MEGA Rehab | Explorer
Do ter de made a token attempt to increase capacity by building a mega rehab facility on a military base about four hours north of Manila. Our crew is the first ever to be allowed inside to film. It’s a big complex divided into four phases. Each phase can…