yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: p-series | Series | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

So we have an infinite series here: one plus one over two to the fifth plus one over three to the fifth, and we just keep on going forever. We could write this as the sum from n equals one to infinity of 1 over n to the 5th power, 1 over n to the 5th power.

Now, you might recognize—notice when n is equal to 1, this is 1 over 1 to the 5th; that's that over there. And we could keep on going. Now you might immediately recognize this as a p series, and a p series has the general form of the sum going from n equals 1 to infinity of 1 over n to the p, where p is a positive value.

So, in this particular case, our p for this p series is equal to five; p is equal to five. Now you might already recognize under which conditions for a p series does it converge or diverge. It's going to converge. It's going to converge when your p is greater than one, which is clearly the case in this scenario right over here. Our p is clearly greater than one.

We would diverge; we would diverge if our p is greater than zero and less than or equal or less than or equal to 1. This would be a divergence. So if this was like 0.9 here, or if this was a, you know, three-fourths, then we would be diverging. So at least for this one, we are convergent.

Let's do another one of these. All right, so here you might again recognize this as a p series. Let me rewrite this infinite sum. So this is the sum from n equals 1 to infinity of 1 over—let's see—we have square root of 2, square root of 3. So you could use this as 2 to the one-half, 3 to the one-half, 4 to the one-half. So it's 1 over n to the one half.

Notice this is when n is equal to one: one over one to the one half is one. One over two to the one half, well that's this right over here, and we keep on going on and on and on. Well, in this case, we still have a p series. We have one over n to some power, and that power is positive, but notice in this case our p falls between zero and one.

So one half is our p, so p for our p series is equal to one-half, and that's between zero and one. Remember, we're divergent—divergent when our p is greater than zero and less than or equal to one, which was clearly the case right over here. So this is going to be divergent.

More Articles

View All
Impacts of Agricultural Practices| Land and water use| AP Environmental science| Khan Academy
Hey there! Today I’m going to cover the impacts of agricultural practices. To do so, I’m going to take you through my morning ritual. It sounds weird, but my bowl of multigrain Cheerios and rice milk and relaxing in my super comfy pajamas are all connecte…
7 Tips for Effective Remote Learning with Khan Academy
Hello all! Welcome to Seven Tips for Effective Remote Learning with Khan Academy. My name is Megan Patani and I head up U.S. Teacher Education here at Khan Academy. I’m joined today by my colleague Jeremy, who leads our Teacher Success Team. So just a li…
How To Grow Your Direct To Consumer Brand | The Gourmet Insider | Chef Wonderful
[Music] And so now you’ve recently partnered with Vintage Wine Estates on the new lifestyle platform called Shop Mr. Wonderful. How did that come about, and have you had a long-standing relationship with Vintage Wine Estates? It’s a remarkable story and …
Change Your Life – One Tiny Step at a Time
If you are like most people, there is a gap between the person you are and the person you wish to be. There are little things you think you should do and big things you ought to achieve. From working out regularly, eating healthily, learning a language, w…
Why 25% Of Workers Just Quit Their Job
Does anybody want to work anymore? It seems like quiet quitting is everywhere now. They’re saying half of people are thinking about quiet quitting. Late-night emails, ignore those. Quiet quitting is a really bad idea. What’s up, guys? It’s Graham here. S…
Jessica Mah at Female Founders Conference 2014
Jessica Ma is the founder and CEO of Indinero, a company that takes care of counting payroll and taxes for businesses. Jessica founded her very first company in middle school and started Indinero from her UC Berkeley dorm room, where she was studying comp…