yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: p-series | Series | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

So we have an infinite series here: one plus one over two to the fifth plus one over three to the fifth, and we just keep on going forever. We could write this as the sum from n equals one to infinity of 1 over n to the 5th power, 1 over n to the 5th power.

Now, you might recognize—notice when n is equal to 1, this is 1 over 1 to the 5th; that's that over there. And we could keep on going. Now you might immediately recognize this as a p series, and a p series has the general form of the sum going from n equals 1 to infinity of 1 over n to the p, where p is a positive value.

So, in this particular case, our p for this p series is equal to five; p is equal to five. Now you might already recognize under which conditions for a p series does it converge or diverge. It's going to converge. It's going to converge when your p is greater than one, which is clearly the case in this scenario right over here. Our p is clearly greater than one.

We would diverge; we would diverge if our p is greater than zero and less than or equal or less than or equal to 1. This would be a divergence. So if this was like 0.9 here, or if this was a, you know, three-fourths, then we would be diverging. So at least for this one, we are convergent.

Let's do another one of these. All right, so here you might again recognize this as a p series. Let me rewrite this infinite sum. So this is the sum from n equals 1 to infinity of 1 over—let's see—we have square root of 2, square root of 3. So you could use this as 2 to the one-half, 3 to the one-half, 4 to the one-half. So it's 1 over n to the one half.

Notice this is when n is equal to one: one over one to the one half is one. One over two to the one half, well that's this right over here, and we keep on going on and on and on. Well, in this case, we still have a p series. We have one over n to some power, and that power is positive, but notice in this case our p falls between zero and one.

So one half is our p, so p for our p series is equal to one-half, and that's between zero and one. Remember, we're divergent—divergent when our p is greater than zero and less than or equal to one, which was clearly the case right over here. So this is going to be divergent.

More Articles

View All
Charlie Munger: The Investment Opportunity of a GENERATION (Last Ever Interview)
Oh boy, do I have a special treat for you guys! Legendary investor Charlie Munger just gave a rare sit-down interview, which is the first new Charlie interview I have seen in years. You’re going to want to stick around to the end of this video because Mun…
007 Maps of Meaning: 7 Contemplating Genesis (TVO)
I think of all the stories that we’ve investigated so far, all the fundamental myths of creation that we’ve investigated so far, the two that we’re going to talk about in detail today are probably the two stories that have had more impact on the course of…
The method that can "prove" almost anything - James A. Smith
In 2011, a group of researchers conducted a scientific study to find an impossible result: that listening to certain songs can make you younger. Their study involved real people, truthfully reported data, and commonplace statistical analyses. So how did t…
Introduction to verb aspect | The parts of speech | Grammar | Khan Academy
Hello grammarians. So, I’ve talked about the idea of verb tense, which is the ability to situate words in time. But today, I’d like to talk about verb aspect, which is kind of like tense but more. Let me explain what that means. So, with basic verb tens…
Tracking Tigers Is Just As Dangerous As It Sounds | Expedition Raw
We’re setting camera traps to study tigers. Two people got eaten by tigers right before we started. When there’s a tiger around, you can’t sleep; you can barely eat. You can’t do anything because all you are scared for your life. I’ve been in Indonesia n…
LICK DOOR KNOBS! ... IMG! #36
The best way to play horseshoes and Rihanna’s butt sings a song. It’s episode 36 of IMG! Mankind has come a long way, but this concept for an alarm clock that slowly shreds money until you wake up and stop it is genius. Less genius is this guy. Kid, kid, …