yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: p-series | Series | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

So we have an infinite series here: one plus one over two to the fifth plus one over three to the fifth, and we just keep on going forever. We could write this as the sum from n equals one to infinity of 1 over n to the 5th power, 1 over n to the 5th power.

Now, you might recognize—notice when n is equal to 1, this is 1 over 1 to the 5th; that's that over there. And we could keep on going. Now you might immediately recognize this as a p series, and a p series has the general form of the sum going from n equals 1 to infinity of 1 over n to the p, where p is a positive value.

So, in this particular case, our p for this p series is equal to five; p is equal to five. Now you might already recognize under which conditions for a p series does it converge or diverge. It's going to converge. It's going to converge when your p is greater than one, which is clearly the case in this scenario right over here. Our p is clearly greater than one.

We would diverge; we would diverge if our p is greater than zero and less than or equal or less than or equal to 1. This would be a divergence. So if this was like 0.9 here, or if this was a, you know, three-fourths, then we would be diverging. So at least for this one, we are convergent.

Let's do another one of these. All right, so here you might again recognize this as a p series. Let me rewrite this infinite sum. So this is the sum from n equals 1 to infinity of 1 over—let's see—we have square root of 2, square root of 3. So you could use this as 2 to the one-half, 3 to the one-half, 4 to the one-half. So it's 1 over n to the one half.

Notice this is when n is equal to one: one over one to the one half is one. One over two to the one half, well that's this right over here, and we keep on going on and on and on. Well, in this case, we still have a p series. We have one over n to some power, and that power is positive, but notice in this case our p falls between zero and one.

So one half is our p, so p for our p series is equal to one-half, and that's between zero and one. Remember, we're divergent—divergent when our p is greater than zero and less than or equal to one, which was clearly the case right over here. So this is going to be divergent.

More Articles

View All
Why Do You Make People Look Stupid?
Hey Youtube, you said you wanted to talk. What’s up? Why do you go around making other people look stupid? What do you mean? What’s water made of? Water. Hahaha, what makes water? Water. Ok, what elements does it take to make water? H2O. So what …
Inside Japan’s Earthquake Simulator
This is the world’s largest earthquake simulator. It’s called E-Defense. Its huge shake table can support a 10-story building and then move it in all directions with the force of the world’s most destructive earthquakes. E-Defense has conducted more than …
Bitcoin Is About To Snap
What’s up Grandma! It’s guys here, so we gotta bring attention to a topic that, in my opinion, is not getting enough recognition. Which I think is surprising because this has the potential to completely change the trajectory in terms of how we transact mo…
How to get leads in Real Estate
What’s up you guys, it’s Graham here! So today I’m going to be making a video about how to get clients and get leads in real estate. I’ll be starting with some really obvious ways first, and then working into a few more unorthodox approaches that you can …
Zeros of polynomials: plotting zeros | Polynomial graphs | Algebra 2 | Khan Academy
We’re told we want to find the zeros of this polynomial, and they give us the polynomial right over here, and it’s in factored form. They say plot all the zeros or the x-intercepts of the polynomial in the interactive graph. This is a screenshot from Khan…
Persistence Of Vision
So tonight I’m hanging out with my friend Nigel, and he’s brought along one of his science toys—a little white plastic ball. Um, it’s not actually a white plastic ball at all. You told me you were bringing the white plastic ball tonight. It’s, uh, what co…