yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: p-series | Series | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

So we have an infinite series here: one plus one over two to the fifth plus one over three to the fifth, and we just keep on going forever. We could write this as the sum from n equals one to infinity of 1 over n to the 5th power, 1 over n to the 5th power.

Now, you might recognize—notice when n is equal to 1, this is 1 over 1 to the 5th; that's that over there. And we could keep on going. Now you might immediately recognize this as a p series, and a p series has the general form of the sum going from n equals 1 to infinity of 1 over n to the p, where p is a positive value.

So, in this particular case, our p for this p series is equal to five; p is equal to five. Now you might already recognize under which conditions for a p series does it converge or diverge. It's going to converge. It's going to converge when your p is greater than one, which is clearly the case in this scenario right over here. Our p is clearly greater than one.

We would diverge; we would diverge if our p is greater than zero and less than or equal or less than or equal to 1. This would be a divergence. So if this was like 0.9 here, or if this was a, you know, three-fourths, then we would be diverging. So at least for this one, we are convergent.

Let's do another one of these. All right, so here you might again recognize this as a p series. Let me rewrite this infinite sum. So this is the sum from n equals 1 to infinity of 1 over—let's see—we have square root of 2, square root of 3. So you could use this as 2 to the one-half, 3 to the one-half, 4 to the one-half. So it's 1 over n to the one half.

Notice this is when n is equal to one: one over one to the one half is one. One over two to the one half, well that's this right over here, and we keep on going on and on and on. Well, in this case, we still have a p series. We have one over n to some power, and that power is positive, but notice in this case our p falls between zero and one.

So one half is our p, so p for our p series is equal to one-half, and that's between zero and one. Remember, we're divergent—divergent when our p is greater than zero and less than or equal to one, which was clearly the case right over here. So this is going to be divergent.

More Articles

View All
Human Body 101 | National Geographic
The human body is a complex network of cells, tissues, and organs that together make life possible. Ten major systems are responsible for the body’s functions: skeletal, muscular, cardiovascular, nervous, endocrine, lymphatic, respiratory, digestive, urin…
Federalism in the United States | US government and civics | Khan Academy
What we’re going to do in this video is talk about the idea of federalism, which is core to the United States government. Now, federalism, the word originates, its root comes from the Latin word “fetus,” which I’m probably not pronouncing perfectly, but …
Mr. Freeman, part 64
Ooops! Uh… Close the door! Get all of the young children out of here, and put your hands where I can see them! Do it! Today I’m going to tell you about a joyful and pleasant pastime, a piece of pocket-size happiness for anyone, a path to pure pleasure th…
Netherlands in 100 Seconds | National Geographic
[Music] What do the Netherlands really look like? To get a better sense of proportion, let’s go on a 100-second walk across the nation. Each second of the walk reveals one percent of the lands and how they look from above. Are you ready for the Netherland…
Westworld , Ford about God and existence. [S02E07]
[Music] To see the world, rain of sand. Heaven in a wild flower. Hold infinity in the palm of your hand and eternity in an hour. [Music] Robert: How are you alive? Bernard: Well, you’ve seen the company’s little undertaking. Do you think James Dallas wo…
How to Get Your First Customers | Startup School
Foreign [Music] School. My name is Gustav, and I’m a group partner here at Y Combinator. Today, I’m going to talk about how to go from talking to users to getting your first customers. Here’s what I plan to cover today: What does it mean to do things t…