yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: p-series | Series | AP Calculus BC | Khan Academy


2m read
·Nov 11, 2024

So we have an infinite series here: one plus one over two to the fifth plus one over three to the fifth, and we just keep on going forever. We could write this as the sum from n equals one to infinity of 1 over n to the 5th power, 1 over n to the 5th power.

Now, you might recognize—notice when n is equal to 1, this is 1 over 1 to the 5th; that's that over there. And we could keep on going. Now you might immediately recognize this as a p series, and a p series has the general form of the sum going from n equals 1 to infinity of 1 over n to the p, where p is a positive value.

So, in this particular case, our p for this p series is equal to five; p is equal to five. Now you might already recognize under which conditions for a p series does it converge or diverge. It's going to converge. It's going to converge when your p is greater than one, which is clearly the case in this scenario right over here. Our p is clearly greater than one.

We would diverge; we would diverge if our p is greater than zero and less than or equal or less than or equal to 1. This would be a divergence. So if this was like 0.9 here, or if this was a, you know, three-fourths, then we would be diverging. So at least for this one, we are convergent.

Let's do another one of these. All right, so here you might again recognize this as a p series. Let me rewrite this infinite sum. So this is the sum from n equals 1 to infinity of 1 over—let's see—we have square root of 2, square root of 3. So you could use this as 2 to the one-half, 3 to the one-half, 4 to the one-half. So it's 1 over n to the one half.

Notice this is when n is equal to one: one over one to the one half is one. One over two to the one half, well that's this right over here, and we keep on going on and on and on. Well, in this case, we still have a p series. We have one over n to some power, and that power is positive, but notice in this case our p falls between zero and one.

So one half is our p, so p for our p series is equal to one-half, and that's between zero and one. Remember, we're divergent—divergent when our p is greater than zero and less than or equal to one, which was clearly the case right over here. So this is going to be divergent.

More Articles

View All
After Decades of Brownface, South Asians Fight for Better Representation | National Geographic
Mainstream media has characterized how we see South Asians, whether by romanticizing its biggest country, India, or asserting the model minority stereotype. But it’s not okay, and today South Asian actors and comedians are pushing back. South Asia is mad…
Dog Duty Inspiration | Big Fish, Texas
Yeah, it’s uh, Nick. Ores is Tommy or Arthur around? Pops brought Jenny and dropped her. Brought the fish house with me, ‘cause ultimately knows that I’m going to take care of her. I’m the only responsible one down there. She just sits there on a desk an…
Subtracting vectors with parallelogram rule | Vectors | Precalculus | Khan Academy
In this video, we’re going to think about what it means to subtract vectors, especially in the context of what we talked about as the parallelogram rule. So, let’s say we want to start with vector A, and from that, we want to subtract vector B. We have v…
Bridge of Terror | Wicked Tuna: Outer Banks
I gotta worry about navigating the boat through the bridge without the shrine. This bridge is the reason why you know people are afraid to go fishing here. It’s our 16th day in the water; we’ve only caught one fish and that was on our first day. We’re des…
Quantitative electrolysis | Applications of thermodynamics | AP Chemistry | Khan Academy
We already know that in an electrolytic cell, current or movement of electrons is used to drive a redox reaction. If we look at a generic reduction half-reaction, the stoichiometry of the half-reaction shows how many electrons are needed to reduce a gener…
Choosing the right school | Careers and education | Financial Literacy | Khan Academy
So let’s think a little bit about how you might decide where you want to go to college. The first thing I’ll remind you, because this can oftentimes be a pretty stressful decision, is that there is no right decision. You just need to make the decision rig…