yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Solving square-root equations: two solutions | Mathematics III | High School Math | Khan Academy


3m read
·Nov 11, 2024

Let's say that we have the equation ( 6 + 3w = \sqrt{2w + 12} + 2w ).

See if you can pause the video and solve for ( w ), and it might have more than one solution, so keep that in mind.

All right, now let's work through this together. The first thing I'd like to do whenever I see one of these radical equations is just isolate the radical on one side of the equation. So let's subtract ( 2w ) from both sides. I want to get rid of that ( 2w ) from the right-hand side. I just want the radical sign. If I subtract ( 2w ) from both sides, what am I left with? Well, on the left-hand side, I am left with ( 6 + 3w - 2w ). Well, ( 3 ) of something take away ( 2 ) of them, you're going to be left with ( w ).

So, ( 6 + w = \sqrt{2w + 12} ).

Now, to get rid of the radical, we're going to square both sides. We've seen before that this process right over here is a little bit tricky because when you're squaring a radical in a radical equation like this and then you solve, you might find an extraneous solution. What do I mean by that? Well, we're going to get the same result whether we square this or whether we square that because when you square a negative, it becomes a positive. But those are fundamentally two different equations.

We only want the solutions that satisfy the one that doesn't have the negative there. So that's why we're going to test our solutions to make sure that they're valid for our original equation.

If we square both sides, on the left-hand side we're going to have ( (6 + w)^2 ). It's going to be ( w^2 + 2(6)(w) + 6^2 ). So, ( w^2 + 12w + 36 ) is equal to ( 2w + 12 ).

Now we can subtract ( 2w ) and ( 12 ) from both sides. So let's do that, so then we can get it into kind of a standard quadratic form.

So let's subtract ( 2w ) from both sides and let's subtract ( 12 ) from both sides. Once again, I just want to get rid of this on the right-hand side. I am going to be left with ( w^2 + (12w - 2w) + (36 - 12) = 0 ).

So, ( w^2 + 10w + 24 = 0 ). Let's see, to solve this, is this factorable? Are there two numbers that add up to ( 10 ) and whose product is ( 24 )? Well, what jumps out at me is ( 6 ) and ( 4 ).

So we can rewrite this as ( (w + 4)(w + 6) = 0 ).

If I have the product of two things equaling zero, to solve this, either one or both of them could be equal to zero. Zero times anything is going to be zero. So, ( w + 4 = 0 ) or ( w + 6 = 0 ).

Over here, if you subtract ( 4 ) from both sides, you get ( w = -4 ) or subtract ( 6 ) from both sides here, ( w = -6 ).

Now, let's verify that these actually are solutions to our original equation. Remember, our original equation was ( 6 + 3w = \sqrt{2w + 12} + 2w ).

So let's see if ( w = -4 ) works.

If ( w = -4 ), that gives us ( 6 + 3(-4) = \sqrt{2(-4) + 12} + 2(-4) ).

So this would be ( 6 - 12 = \sqrt{-8 + 12} - 8 ).

This simplifies to ( -6 = \sqrt{4} - 8 ), or ( -6 = 2 - 8 ).

That indeed holds true, ( -6 = -6 ).

So this is definitely a solution.

Now, let's try ( w = -6 ).

So if ( w = -6 ), we get ( 6 + 3(-6) = \sqrt{2(-6) + 12} + 2(-6) ).

This gives us ( 6 - 18 = \sqrt{-12 + 12} - 12 ).

So we have ( -12 = 0 - 12 ), which is also true.

So we get ( -12 = -12 ).

Therefore, these are actually both solutions to our original radical equation.

More Articles

View All
How To Make Time Work For You
You overestimate what you can do in a day and underestimate what you can do in a year. That’s the main reason why you never have enough time. But there is a way to take control of your time and make it work for you. Let us explain. Welcome to a lux. When…
Fishing With Dynamite Is Harmful—Why Does It Persist? | National Geographic
[Music] You can come out here on a fine morning and you know there’ll just be ramp and blasting in areas where there may be tuna feeds, or if there aren’t tuna feeds, then they may target the reefs. I would say probably for the last 5 years it’s at least …
Summiting the World’s Most Dangerous Mountain | Podcast | Overheard at National Geographic
We’re high on a snowy mountain in Pakistan where a group of Nepalese climbers are struggling through harsh winds. It’s two o’clock in the evening. Think this is one of the hottest climbs we have ever met. [Music] That’s Ming Maggioja Sherpa. He goes by …
Warren Buffett: The BEST investment during inflation
So, the best investment by far is inflation. It is at its highest level in decades. As a result, inflation has been the number one concern for nearly everyone recently. But what if I told you there was a way for you to never have to worry about inflation …
Why Should I Start a Startup? by Michael Seibel
Alright, Michael Seibel. So today, we’re gonna do something different and talk about a few of the essays you’ve worked on in the past. I think these are maybe the past two years. Yes, so the first one is “Why Should I Start a Startup?” You start this ess…
World War I: Homefront | Period 7: 1890-1945 | AP US History | Khan Academy
In 1917, the United States entered World War One on the side of the Allies. After several years of neutrality, Woodrow Wilson, who was serving as president of the United States at the time, even campaigned for re-election on the slogan “He kept us out of …