yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Adding fractions with unlike denominators introduction


3m read
·Nov 10, 2024

In this video, we're gonna try to figure out what one-half plus one-third is equal to. And like always, I encourage you to pause this video and try to figure it out on your own.

All right, now let's work through this together, and it might be helpful to visualize one-half and one-third. So this is a visualization of one-half. If you view this entire bar as a whole, then we have shaded in half of it. And if you wanted to visualize one-third, it looks like that.

So you could view this as this half plus this gray third here. What is that going to be equal to? Now, one of the difficult things is we know how to add if we have the same denominator. So if we had a certain number of halves here and a certain number of halves here, well then we would know how many halves we have here. But here, we're trying to add halves to thirds. So how do we do that?

Well, we try to set up a common denominator. Now, what do we mean by a common denominator? Well, what if we could express this quantity and this quantity in terms of some other denominator? A good way to think about it is: Is there a multiple of two and three? And it's simplest when you use the least common multiple.

The least common multiple of two and three is six. So can we express one-half in terms of sixths, and can we express one-third in terms of sixths? So let me just start with 1 over 2. I made this little fraction bar a little bit longer because you'll see why in a second.

Well, if I want to express it in terms of 6, to go from halves to 6, I would have to multiply the denominator by 3. But if I want to multiply the denominator by 3 and not change the value of the fraction, I have to multiply the numerator by 3 as well. And to see why that makes sense, think about this: So this what we have in green is exactly what we had before.

But now, by multiplying the numerator and the denominator by three, I've expressed it into sixths. So notice I have six times as many divisions of the whole bar, and the green part, which you could view as the numerator, I now have three times as many. So these are now sixths. I now have three sixths instead of one half.

So this is the same thing as three over six, and I want to add that. Or if I want to add this to what? Well, how do I express 1/3 in terms of 6? Well, the way that I could do that is 1 over 3. I would want to take each of these thirds and make them into two sections.

So to go from thirds to six, I'd multiply the denominator by two, but I'd also be multiplying the numerator by two. And to see why that makes sense, notice this shaded in gray part is exactly what we have here. But now, we took each of these sections and we made them into two sections. So, you multiply the numerator and the denominator by two.

Instead of thirds, instead of three equal sections, we now have six equal sections. That's what the denominator times two did. Instead of shading in just one of them, I now have shaded in two of them because that one thing that I shaded has now turned into two sections.

And that's what multiplying the numerator by two does. So this is the same thing as three-sixths plus this is going to be two-sixths. Then you could see it here: this is one-sixth, two-sixths. And now that everything is in terms of six, what is it going to be?

Well, it's going to be a certain number of sixths. If I have three of something plus two of that something, well, it's going to be five of that something. In this case, the something is sixths, so it's going to be five-sixths. I have trouble saying that.

And you can visualize it right over here. This is three of the sixths: one, two, three, plus two of the six: one, two, gets us to five-sixths. But you could also view it as this green part was the original half, and this gray part was the original one-third. But to be able to compute it, we expressed both of them in terms of sixths.

More Articles

View All
SOUNDS.
Hey, Vsauce. Michael here. And I’m with Destin in Alabama. What he’s about to do is capture on a Phantom camera at a 1080 frames a second a hawk - that one - catching a target. But today we’re going to talk about sound. First things first. The Raptor Cen…
Inside a Civil War Most People Have Never Heard of | National Geographic
This family was luckier than most. After nine days as hostages, these men returned to their loved ones. It was an incredible moment to witness. So in a I too, kind of fear, anger, and hope is present every day in the Central African Republic. Since 2013,…
Letter from a Birmingham Jail | US government and civics | Khan Academy
What we’re going to read together in this video is what has become known as Martin Luther King’s “Letter from a Birmingham Jail,” which he wrote from a jail cell in 1963 after he and several of his associates were arrested in Birmingham, Alabama, as they …
Did People Used To Look Older?
Hey, Vsauce! Michael here. At the age of 18, Carl Sagan looked like a teenager. But it doesn’t take long in an old high school yearbook to find teenagers who look surprisingly old. These people are all in their 20s, but so are these people. This is Elizab…
Are Birds Modern-Day Dinosaurs? | National Geographic
When an asteroid slammed into Earth 66 million years ago, only about 20% of all animal species survived. So, whatever happened to these lucky few? Birds come from a long line of survivors. It started millions of years before the asteroid strike with a din…
10 Facts About Great White Sharks
Here are some facts about great white sharks: White sharks are live-birthed, usually in litters of between four and seven individuals. Now they’re called pups, but when they’re born, they’re between 1.2 and 1.5 meters! So that’s a pretty big baby. It take…