yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Circuit Terminology


4m read
·Nov 11, 2024

In this video, we're going to talk about some terminology that we use to talk about how circuits are put together. In previous videos, we've talked about the components or elements that are used to make up circuits.

So, for example, resistor, capacitor, and inductor are circuit components. We also call those elements. In addition, we have some sources like a voltage source or, for example, a current source; those would be the components or elements of a circuit.

Now we're going to start assembling these things into circuits, and we need a few more words to talk about. Here's some circuit components that are laying out on the tabletop, and we're going to connect those up with a wire.

So, for example, I could connect this one to this one with this yellow ideal wire. An ideal wire has zero resistance, and it's perfect everywhere. This forms a junction between these two components, and that is called a node. Node is the word for junction; they mean the same thing. That's what a node is.

If I connect up these two other components, I still have one node because I have one junction; that's the same voltage everywhere. So that's what a node is. We're going to go over to this circuit here, and we'll identify the nodes.

This is a little more normal looking tidy circuit. Here's a junction right here between a resistor and this voltage source, so that's one node. If I move over here, I see resistors connected together by ideal wires, so that forms one single node like that. So that's our second node, and down below, same sort of thing. I see an ideal wire connecting the resistors and the source, so I can color that in, and that's node number three.

So this circuit has three nodes. Now, what's connecting the nodes? The thing that's connecting the nodes is called a branch, and a branch is the same thing as an element. We'll count the branches or elements in this thing.

This voltage source connects the third node to the first node, so that's one element. This resistor connects node one and node two, so that's the second branch. This resistor connects node two and node three, so there's the third branch. This resistor with a separate current also connects those two nodes, so that's the fourth branch.

So this circuit has one, two, three, four elements in it, and it also means it has four branches. Four branches! So that's what a branch and a node are.

I'm going to move the picture over a little bit so that we can do this again on a little more fancy circuit. So first thing we're going to do again just to repeat the process, we're going to count the nodes. Here's a junction between a resistor and a source. Here's three resistors connected by a perfect wire, so that's a second node.

Here we find three more resistors connected by a perfect wire, there's a third. Down here, we have a junction between two resistors, so that's our fourth node. Finally, we have this node here connecting these four elements with one node.

This is sometimes called a distributed node when it's all spread out on the page like that, but it's still just one node. So this circuit has five nodes. If we count up the elements, that tells us how many branches there are: one element, two, three, four, five, six, seven. Seven elements!

Alright, there's our two keywords: elements and nodes. Now I'm going to quickly move again down, bring in another circuit here, and we're going to talk about the idea of a mesh. The other thing we're going to talk about is the word loop.

The word mesh comes from screens that you put on your windows to keep the bugs out. If I draw a screen like this, this is what it looks like: a bunch of crossing wires, and this little space right here, that little gap is called a mesh. That's what that word comes from.

So we're gonna find the meshes of our circuit, and what we look for... here's the branches, and the mesh is a kind of a loop that fills up this open space. This circuit has one mesh, two meshes, three meshes.

That's how that looks. To draw a mesh, you start on a node, you go through elements until you come back to where you started. That's how we did those three, and they fill the open windows of the circuit.

So this circuit has three meshes. Now that a mesh is a loop, and we could have other kinds of loops too; they don't have to be just the ones that fill the windows.

So in general, this circuit has other loops, and we'll identify some of those. Let's just start at one of these nodes here and go around like that, and this is a loop. I could draw other loops in here; we'll make them all different colors.

There's a loop! If I start right here, I can draw a loop through these elements, and finally, if I have a sharp eye, there's one more loop in this circuit. If I start, let's just start right here, and it actually goes all the way around the outside.

So this circuit has three—actually, if I add them together, this has three loops that I drew here plus the three loops that were the meshes. So this circuit has six loops. Circuits always have a lot of loops and so usually, we don't talk about these. More often, it's more organized and straightforward to talk about how many meshes are in a circuit.

Alright, so that does it for this video. We got mesh and loop; we talked about components and elements, and we finished up with the idea also of nodes and branches. So that'll do it. There's our new vocabulary for talking about circuits.

More Articles

View All
Simplifying resistor networks | Circuit analysis | Electrical engineering | Khan Academy
We’ve learned about series and parallel resistors. We’ve learned how to simplify series and parallel resistors into an equivalent resistor. Just to review, for the series resistor, our series equivalent ( R_{series} ) is equal to the sum of resistors in …
Geoff Ralston's Intro - Startup Investor School Day 1
Welcome everyone to my competitors’ startup investor school. If you think you’re at a different class, you should leave now. So it’s great to see you all here. I’m Jeff Ralston, and I’m going to act kind of as the master of ceremonies. I’ll be introducin…
Finding inverse functions: rational | Mathematics III | High School Math | Khan Academy
[Voiceover] So we’re told that g of x is equal to two x minus one over x plus three. Based on this, pause the video and see if you can figure out what the inverse of g is. g inverse of x. What is that going to be equal to? Alright, I’m assuming you’ve had…
Why You Will Marry the Wrong Person
I’ve been asked to talk to you today about an essay that I wrote, uh, for the New York Times, um, last year, which went under a rather dramatic, uh, heading. Uh, it was called “Why You Will Marry the Wrong Person.” And perhaps we can just begin, um, we’re…
Review of revenue and cost graphs for a monopoly | Microeconomics | Khan Academy
What I want to do in this video is review a little bit of what we’ve learned about monopolies and in the process get a better understanding for some of the graphical representations which we have talked about in the past. But I want to put it all togethe…
Worked example: Determining the effect of temperature on thermodynamic favorability | Khan Academy
Let’s do a worked example where we calculate the standard change in free energy, ΔG⁰, for a chemical reaction. For our reaction, let’s look at the synthesis of ammonia gas from nitrogen gas and hydrogen gas at 25 degrees Celsius. ΔH⁰ for this reaction is…