yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Sampling distribution of the difference in sample proportions -Probability example


3m read
·Nov 10, 2024

In a previous video, we explored the sampling distribution that we got when we took the difference between sample proportions. In that video, we described the distribution in terms of its mean, standard deviation, and shape. What we're going to do in this video is build on that example and try to answer a little bit more about it.

So, in this situation, what we want to do is find the probability, given that we already know about this sampling distribution's mean, standard deviation, and shape. We want to find the probability that the sample proportion of defects from plant B is greater than the sample proportion from plant A. So pause this video and see if you can figure this out.

All right, now let's do this together. So, first of all, let's just interpret what this is: the probability that the sample proportion of defects from plant B is greater than the sample proportion from plant A. If the sample proportion from plant B is greater than the proportion from plant A, then the difference between the sample proportions is going to be negative.

So, this is equivalent to the probability that the difference of the sample proportions—so the sample proportion from A minus the sample proportion from B—is going to be less than zero. Another way to think about it: that's going to be this area right over here.

Now, there are a bunch of ways that we can figure out this area, but the easiest—or one of the easiest, I guess, there are many different ways to do it—is to figure out how many, up to and including, how many standard deviations below the mean this is. Then we could use a z-table.

So, what we just have to do is figure out what the z value is here. And the z value here, we just have to say, “Well, how many standard deviations below the mean is this?” I'll do it up here, let me square this off so I don't make it too messy.

Z is going to be equal to... So, we are negative 0.02 from the mean or we're 0.02 to the left of the mean. So, I'll just do negative 0.02 and then over the standard deviation, which is 0.025. This is going to be equal to... Get a calculator here. We get 0.02 divided by 0.025, which is equal to that. And we are, of course, going to be to the left of the mean, so our z is going to be approximately negative 0.8.

I'm saying approximately because this was approximate over here when we figured out the standard deviation. So, it is negative 0.8, and then we just have to use a z lookup table. If we look at a z lookup table, what we see here is, if we're going to negative 0.8, negative 0.8 is right over here.

So, negative 0.8, and then we have zeros after that. So, we're looking at this right over here: the area under the normal curve up to and including that z value. We always have to make sure that we're looking at the right thing on this standard normal probabilities table right over here.

That gives us 0.21, or we could say this is approximately 21. So, let me get rid of this. And so, we know that this right over here is approximately 21, or we could say 0.21.

So, the probability of the sample proportion of defects from plant B being greater than the sample proportion from plant A is, give or take, roughly one in five.

More Articles

View All
It’s True: Electric Eels Can Leap From the Water to Attack | National Geographic
The eel has this challenge that when it gives off electricity, that electricity is distributed around the eel in the water. A predator that is on land and reaching into that pool may not receive very much of a shock. You’ve got this tale from 1800 about …
The Waters of Slovenia | National Geographic
My connection to the sea started when I was little. I spent most of my summers at the sea, swimming. Ever since I was two and a half years old, I started swimming. I kept on developing a love for the water. The water, here, our skin is different from anyw…
Telling time to the nearest minute: labeled clock | Math | 3rd grade | Khan Academy
Let’s look at this clock and see if we can tell what time is shown on it. First thing, when we look at a clock, we have two hands, and that’s because time is told in two parts. Time is told in hours; that’s part, and on a clock, the hours are represented…
The Ebola Virus Explained — How Your Body Fights For Survival
What makes Ebola so dangerous? How can a virus overwhelm the very complex defense system of the body so quickly and so effectively? Let’s take a look at what Ebola does. (Theme music) Ebola is a virus. A virus is a very small thing. A bit of RNA or DNA a…
The Truth About Toilet Swirl - Northern Hemisphere
Hey it’s me Destin. Welcome back to Smarter Every Day. Here’s the deal. I’ve created a video in the northern hemisphere and Derek from Veritasium has created one in the south. You have to synchronize these two videos in order for this to make any sense, b…
Moral Dilemmas That Will Break Your Brain
Imagine you’re going blind. The world slowly becomes a blur. You can no longer see your family or your friends. You can’t see the beauty of a mountain landscape or the ripples in the ocean. Then a YouTuber comes around offering to give you the gift of sig…