yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Sampling distribution of the difference in sample proportions -Probability example


3m read
·Nov 10, 2024

In a previous video, we explored the sampling distribution that we got when we took the difference between sample proportions. In that video, we described the distribution in terms of its mean, standard deviation, and shape. What we're going to do in this video is build on that example and try to answer a little bit more about it.

So, in this situation, what we want to do is find the probability, given that we already know about this sampling distribution's mean, standard deviation, and shape. We want to find the probability that the sample proportion of defects from plant B is greater than the sample proportion from plant A. So pause this video and see if you can figure this out.

All right, now let's do this together. So, first of all, let's just interpret what this is: the probability that the sample proportion of defects from plant B is greater than the sample proportion from plant A. If the sample proportion from plant B is greater than the proportion from plant A, then the difference between the sample proportions is going to be negative.

So, this is equivalent to the probability that the difference of the sample proportions—so the sample proportion from A minus the sample proportion from B—is going to be less than zero. Another way to think about it: that's going to be this area right over here.

Now, there are a bunch of ways that we can figure out this area, but the easiest—or one of the easiest, I guess, there are many different ways to do it—is to figure out how many, up to and including, how many standard deviations below the mean this is. Then we could use a z-table.

So, what we just have to do is figure out what the z value is here. And the z value here, we just have to say, “Well, how many standard deviations below the mean is this?” I'll do it up here, let me square this off so I don't make it too messy.

Z is going to be equal to... So, we are negative 0.02 from the mean or we're 0.02 to the left of the mean. So, I'll just do negative 0.02 and then over the standard deviation, which is 0.025. This is going to be equal to... Get a calculator here. We get 0.02 divided by 0.025, which is equal to that. And we are, of course, going to be to the left of the mean, so our z is going to be approximately negative 0.8.

I'm saying approximately because this was approximate over here when we figured out the standard deviation. So, it is negative 0.8, and then we just have to use a z lookup table. If we look at a z lookup table, what we see here is, if we're going to negative 0.8, negative 0.8 is right over here.

So, negative 0.8, and then we have zeros after that. So, we're looking at this right over here: the area under the normal curve up to and including that z value. We always have to make sure that we're looking at the right thing on this standard normal probabilities table right over here.

That gives us 0.21, or we could say this is approximately 21. So, let me get rid of this. And so, we know that this right over here is approximately 21, or we could say 0.21.

So, the probability of the sample proportion of defects from plant B being greater than the sample proportion from plant A is, give or take, roughly one in five.

More Articles

View All
Adding 1 vs. adding 10 | Addition and subtraction | 1st grade | Khan Academy
So pause this video and real quick figure out what 27 plus 1 is, and then if possible, figure out what 27 plus 10 is. All right, so a lot of, let’s think about it together. You might have been able to do this one pretty easily. You might have said, okay,…
Unboxing my new $20,000 watch
What’s up guys? It’s Graham here. So yes, the title you read is correct. I just went and spent twenty thousand dollars to go and buy a watch. I realize that goes against pretty much everything I talk about here on the channel—saving as much money as you c…
The Dangers of Climbing Helmcken Falls | Edge of the Unknown on Disney+
[MUSIC PLAYING] Yeah. [BLEEP] [CHUCKLING] From here, it’s hard to tell the scale. Yeah, it’s so– it’s so big. WILL GADD: If you aren’t scared walking into Helmcken Falls, something is wrong with you. Imagine a covered sports stadium, and you cut it in h…
"It Really Wasn't the Bear's Fault": Grizzly Attack Survivor Reflects | National Geographic
We see them all the time, but they usually go the other direction. With the S Cubs, it’s a whole different category. When she saw me, she just basically said, “You’re [Music] next.” I was irrigating my ranch, and I have been doing this at that particular …
How to Become the British Monarch
How to become the British Monarch: Historically, the crown sat upon your head mostly because you had the biggest army. When you died, usually your eldest son kept control over that army, and so the crown relocated to his head; though, of course, someone w…
Buddhist Wisdom For Inner Peace
Buddhism has evolved into one of the world’s major religions, with many schools and branches. But if we go back to the source, Gautama Buddha, who was born as a prince that later became enlightened and known as the Buddha, we find a collection of teaching…