yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Sampling distribution of the difference in sample proportions -Probability example


3m read
·Nov 10, 2024

In a previous video, we explored the sampling distribution that we got when we took the difference between sample proportions. In that video, we described the distribution in terms of its mean, standard deviation, and shape. What we're going to do in this video is build on that example and try to answer a little bit more about it.

So, in this situation, what we want to do is find the probability, given that we already know about this sampling distribution's mean, standard deviation, and shape. We want to find the probability that the sample proportion of defects from plant B is greater than the sample proportion from plant A. So pause this video and see if you can figure this out.

All right, now let's do this together. So, first of all, let's just interpret what this is: the probability that the sample proportion of defects from plant B is greater than the sample proportion from plant A. If the sample proportion from plant B is greater than the proportion from plant A, then the difference between the sample proportions is going to be negative.

So, this is equivalent to the probability that the difference of the sample proportions—so the sample proportion from A minus the sample proportion from B—is going to be less than zero. Another way to think about it: that's going to be this area right over here.

Now, there are a bunch of ways that we can figure out this area, but the easiest—or one of the easiest, I guess, there are many different ways to do it—is to figure out how many, up to and including, how many standard deviations below the mean this is. Then we could use a z-table.

So, what we just have to do is figure out what the z value is here. And the z value here, we just have to say, “Well, how many standard deviations below the mean is this?” I'll do it up here, let me square this off so I don't make it too messy.

Z is going to be equal to... So, we are negative 0.02 from the mean or we're 0.02 to the left of the mean. So, I'll just do negative 0.02 and then over the standard deviation, which is 0.025. This is going to be equal to... Get a calculator here. We get 0.02 divided by 0.025, which is equal to that. And we are, of course, going to be to the left of the mean, so our z is going to be approximately negative 0.8.

I'm saying approximately because this was approximate over here when we figured out the standard deviation. So, it is negative 0.8, and then we just have to use a z lookup table. If we look at a z lookup table, what we see here is, if we're going to negative 0.8, negative 0.8 is right over here.

So, negative 0.8, and then we have zeros after that. So, we're looking at this right over here: the area under the normal curve up to and including that z value. We always have to make sure that we're looking at the right thing on this standard normal probabilities table right over here.

That gives us 0.21, or we could say this is approximately 21. So, let me get rid of this. And so, we know that this right over here is approximately 21, or we could say 0.21.

So, the probability of the sample proportion of defects from plant B being greater than the sample proportion from plant A is, give or take, roughly one in five.

More Articles

View All
Go with what you can get started on most quickly. And get that first user.
Here’s a question: I have lots of startup ideas. How do I choose the one to work on? Uh, common problem. There’s too many choices; there’s lots of choices in the world. You don’t know what to focus on. You know, there’s different algorithms you can use.…
3d curl computation example
So let’s go ahead and work through an actual curl computation. Let’s say our vector-valued function V, which is a function of x, y, and z, this is going to be three-dimensional, is defined by the functions, uh, and I don’t know, let’s say the first compo…
Warren Buffett Made Me a Millionaire at 26 | Here's How
Imagine waking up one day, checking your bank account, and realizing you’re a millionaire at 26. Sounds like a dream, right? Well, it wasn’t luck, a lottery win, or some secret family trust fund. It was the result of one man’s wisdom: Warren Buffett. In t…
15 Steps to Become a Billionaire (From Scratch)
You are watching the Sunday motivational video, “15 Steps to Become a Billionaire from Scratch.” Welcome to a Luxe Calm, the place where future billionaires come to get inspired. Halloway Luxor’s and welcome back! This is a very special Sunday motivationa…
Science Advances One Funeral at a Time
I had a bunch of the sides that I wanted to dive into, like finding path integrals, because it seems to me that there’s some kind of a deep symmetry between multiverse theory and feminine path integrals. You’re absolutely right; he believed in multiple h…
Fundraising Panel at Female Founders Conference 2014
Okay everyone, we’re going to now have a slightly different format for the next, uh, 30 minutes. We’re going to have a discussion amongst these four YC female founders about their fundraising experiences. Um, so hopefully there will be lots of interesting…