yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Sampling distribution of the difference in sample proportions -Probability example


3m read
·Nov 10, 2024

In a previous video, we explored the sampling distribution that we got when we took the difference between sample proportions. In that video, we described the distribution in terms of its mean, standard deviation, and shape. What we're going to do in this video is build on that example and try to answer a little bit more about it.

So, in this situation, what we want to do is find the probability, given that we already know about this sampling distribution's mean, standard deviation, and shape. We want to find the probability that the sample proportion of defects from plant B is greater than the sample proportion from plant A. So pause this video and see if you can figure this out.

All right, now let's do this together. So, first of all, let's just interpret what this is: the probability that the sample proportion of defects from plant B is greater than the sample proportion from plant A. If the sample proportion from plant B is greater than the proportion from plant A, then the difference between the sample proportions is going to be negative.

So, this is equivalent to the probability that the difference of the sample proportions—so the sample proportion from A minus the sample proportion from B—is going to be less than zero. Another way to think about it: that's going to be this area right over here.

Now, there are a bunch of ways that we can figure out this area, but the easiest—or one of the easiest, I guess, there are many different ways to do it—is to figure out how many, up to and including, how many standard deviations below the mean this is. Then we could use a z-table.

So, what we just have to do is figure out what the z value is here. And the z value here, we just have to say, “Well, how many standard deviations below the mean is this?” I'll do it up here, let me square this off so I don't make it too messy.

Z is going to be equal to... So, we are negative 0.02 from the mean or we're 0.02 to the left of the mean. So, I'll just do negative 0.02 and then over the standard deviation, which is 0.025. This is going to be equal to... Get a calculator here. We get 0.02 divided by 0.025, which is equal to that. And we are, of course, going to be to the left of the mean, so our z is going to be approximately negative 0.8.

I'm saying approximately because this was approximate over here when we figured out the standard deviation. So, it is negative 0.8, and then we just have to use a z lookup table. If we look at a z lookup table, what we see here is, if we're going to negative 0.8, negative 0.8 is right over here.

So, negative 0.8, and then we have zeros after that. So, we're looking at this right over here: the area under the normal curve up to and including that z value. We always have to make sure that we're looking at the right thing on this standard normal probabilities table right over here.

That gives us 0.21, or we could say this is approximately 21. So, let me get rid of this. And so, we know that this right over here is approximately 21, or we could say 0.21.

So, the probability of the sample proportion of defects from plant B being greater than the sample proportion from plant A is, give or take, roughly one in five.

More Articles

View All
Elon Musk Pleads "Vote Like Your Life Depends on It!" and Speaks on Why He Became Politically Active
The Jogan experience, and, uh, it’s meant to be you’re roasting the president. Like Trump’s just there, he’s like, actually, you know, just, he’s like there as part of the support. And then they turned it around and just started roasting Trump, and he’s j…
Neuromarketing: You're Being Manipulated
This video is sponsored by The Daily Upside, a free business and finance newsletter delivered every single weekday. Nowadays, it seems to be a common theme amongst almost everyone to go out and shop our way to happiness. You know, just to take care of our…
Introduction to average rate of change | Functions | Algebra I | Khan Academy
So we have different definitions for d of t on the left and the right, and let’s say that d is distance and t is time. So this is giving us our distance as a function of time. On the left, it’s equal to 3t plus one, and you can see the graph of how distan…
A Man Among Wolves: Photographing Yellowstone’s Iconic Predators | National Geographic
This is so cool! I was in Yellowstone for a year and a half. My job was to shed light on wolf behavior in a natural landscape. A lot of times, wolves get persecuted, and this was an opportunity for me to just show wolves for what they were; for being larg…
What are SMART goals and why do they matter? | Financial goals | Financial Literacy | Khan Academy
So let’s talk a little bit about smart goals when it comes to your finances. When I say smart goals, I’m not just saying well-thought-out or intelligent goals, although I guess it could be that. I’m talking about the acronym S-M-A-R-T: smart goals. Now, …
The reason I'm single
Lots of you guys, it’s Graham here. So here we go! I’ve gotten way too many comments from people asking about my relationships, what I think about dating, what it’s like dating when people know you have money. And then, of course, a lot of people seem to …