yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Sampling distribution of the difference in sample proportions -Probability example


3m read
·Nov 10, 2024

In a previous video, we explored the sampling distribution that we got when we took the difference between sample proportions. In that video, we described the distribution in terms of its mean, standard deviation, and shape. What we're going to do in this video is build on that example and try to answer a little bit more about it.

So, in this situation, what we want to do is find the probability, given that we already know about this sampling distribution's mean, standard deviation, and shape. We want to find the probability that the sample proportion of defects from plant B is greater than the sample proportion from plant A. So pause this video and see if you can figure this out.

All right, now let's do this together. So, first of all, let's just interpret what this is: the probability that the sample proportion of defects from plant B is greater than the sample proportion from plant A. If the sample proportion from plant B is greater than the proportion from plant A, then the difference between the sample proportions is going to be negative.

So, this is equivalent to the probability that the difference of the sample proportions—so the sample proportion from A minus the sample proportion from B—is going to be less than zero. Another way to think about it: that's going to be this area right over here.

Now, there are a bunch of ways that we can figure out this area, but the easiest—or one of the easiest, I guess, there are many different ways to do it—is to figure out how many, up to and including, how many standard deviations below the mean this is. Then we could use a z-table.

So, what we just have to do is figure out what the z value is here. And the z value here, we just have to say, “Well, how many standard deviations below the mean is this?” I'll do it up here, let me square this off so I don't make it too messy.

Z is going to be equal to... So, we are negative 0.02 from the mean or we're 0.02 to the left of the mean. So, I'll just do negative 0.02 and then over the standard deviation, which is 0.025. This is going to be equal to... Get a calculator here. We get 0.02 divided by 0.025, which is equal to that. And we are, of course, going to be to the left of the mean, so our z is going to be approximately negative 0.8.

I'm saying approximately because this was approximate over here when we figured out the standard deviation. So, it is negative 0.8, and then we just have to use a z lookup table. If we look at a z lookup table, what we see here is, if we're going to negative 0.8, negative 0.8 is right over here.

So, negative 0.8, and then we have zeros after that. So, we're looking at this right over here: the area under the normal curve up to and including that z value. We always have to make sure that we're looking at the right thing on this standard normal probabilities table right over here.

That gives us 0.21, or we could say this is approximately 21. So, let me get rid of this. And so, we know that this right over here is approximately 21, or we could say 0.21.

So, the probability of the sample proportion of defects from plant B being greater than the sample proportion from plant A is, give or take, roughly one in five.

More Articles

View All
I Spent $100,000 On A Stock Picking Monkey
What’s up you guys? It’s Graham here. So if you thought this year cannot get any more unpredictable, it just did because I have a hundred thousand dollars on the line for the sole purpose of testing an odd yet unique experiment to see whether or not a mon…
Spend a Day With the World’s Only Grass-Eating Monkeys | National Geographic
A day in the life for all geladas begins on the edges of the cliff. In the morning, they wake up with the sunrise and slowly ascend kind of to the edge of the high plateau. They’ll spend an hour, or maybe more, socializing with each other—grooming, havin…
Lion Rapid Response Team | Best Job Ever
[Music] I’m a first responder for lions in Gorong Goa National Park. Every day, we’re out there working with lions. Very slowly, let’s just see what she’s up to. Gorong Goa National Park is undergoing a remarkable recovery after two decades of civil war,…
How to Build Better Habits
We all brush our teeth. I mean, I hope we do. At some point in our childhood, someone told us that it was really important for us to brush our teeth. And we believed them. We were convinced. Society from then on has largely embraced the act of brushing te…
The Importance of Art Education | StarTalk
There’s a big issue, uh, probably in other places in the world, but we feel it a lot here in the States. The funding for Arts education is always under stress, and the school boards are wondering: Do we cut the art? Do we keep the science? And there’s ten…
Simulating samples from populations example 1 | Grade 8 (TX) | Khan Academy
We’re told a company manager wants to estimate the mean amount of time it takes the employees to travel to work. Here’s what the manager did: Survey the first 20 employees to arrive that day. Note the amount of time for each employee, add those times, a…