yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Sampling distribution of the difference in sample proportions -Probability example


3m read
·Nov 10, 2024

In a previous video, we explored the sampling distribution that we got when we took the difference between sample proportions. In that video, we described the distribution in terms of its mean, standard deviation, and shape. What we're going to do in this video is build on that example and try to answer a little bit more about it.

So, in this situation, what we want to do is find the probability, given that we already know about this sampling distribution's mean, standard deviation, and shape. We want to find the probability that the sample proportion of defects from plant B is greater than the sample proportion from plant A. So pause this video and see if you can figure this out.

All right, now let's do this together. So, first of all, let's just interpret what this is: the probability that the sample proportion of defects from plant B is greater than the sample proportion from plant A. If the sample proportion from plant B is greater than the proportion from plant A, then the difference between the sample proportions is going to be negative.

So, this is equivalent to the probability that the difference of the sample proportions—so the sample proportion from A minus the sample proportion from B—is going to be less than zero. Another way to think about it: that's going to be this area right over here.

Now, there are a bunch of ways that we can figure out this area, but the easiest—or one of the easiest, I guess, there are many different ways to do it—is to figure out how many, up to and including, how many standard deviations below the mean this is. Then we could use a z-table.

So, what we just have to do is figure out what the z value is here. And the z value here, we just have to say, “Well, how many standard deviations below the mean is this?” I'll do it up here, let me square this off so I don't make it too messy.

Z is going to be equal to... So, we are negative 0.02 from the mean or we're 0.02 to the left of the mean. So, I'll just do negative 0.02 and then over the standard deviation, which is 0.025. This is going to be equal to... Get a calculator here. We get 0.02 divided by 0.025, which is equal to that. And we are, of course, going to be to the left of the mean, so our z is going to be approximately negative 0.8.

I'm saying approximately because this was approximate over here when we figured out the standard deviation. So, it is negative 0.8, and then we just have to use a z lookup table. If we look at a z lookup table, what we see here is, if we're going to negative 0.8, negative 0.8 is right over here.

So, negative 0.8, and then we have zeros after that. So, we're looking at this right over here: the area under the normal curve up to and including that z value. We always have to make sure that we're looking at the right thing on this standard normal probabilities table right over here.

That gives us 0.21, or we could say this is approximately 21. So, let me get rid of this. And so, we know that this right over here is approximately 21, or we could say 0.21.

So, the probability of the sample proportion of defects from plant B being greater than the sample proportion from plant A is, give or take, roughly one in five.

More Articles

View All
A Wicked Tongue | Wicked Tuna
[Music] Let’s go fishing! It’s week five, and we’ve caught three fish so far. But last trip, things got a little rocky with my mates, Brad and Lance. “Ask you one simple thing and you flip the out! This is my boat! I’m the captain! I’m the boss! And tha…
Nassim Taleb - The TRUTH About Employment [w/ Russ Roberts]
Let’s talk a little bit about employment. We may have talked about this in the last episode, but it’s so interesting, I just love it. Talk about the example of, um, flying to, um, Germany for October Fest and with I’ve contracted out my private plane and …
Reid Hoffman at Startup School SV 2016
[Applause] So, uh, up next needs no introduction. I’ll give a very quick one. Reed Hoffman, uh, has been in—yeah, please do—round of applause! You know what it sounds like; you all know who he is. I’ll skip the introduction. All right, for the first que…
The Trouble with America’s Captive Tigers | Podcast | Overheard at National Geographic
Nothing would have prepared me for what we actually saw even before we go in. So we, you know, start driving towards South Myrtle Beach, and, uh, we’re driving through this suburban neighborhood where there’s families and, you know, your typical suburban …
Games and modularity | Intro to CS - Python | Khan Academy
So you want to build a game, but how would you even get started? Most games we play have thousands of lines of code; some even have millions. Try and imagine a program with thousands of lines of code all in a single file. Sounds like a nightmare to naviga…
Make Luck Your Destiny
I think it’s pretty interesting that the first three kinds of luck that you described, there are very common clichés for them that everybody knows. And then for that last kind of luck, that comes to you out of the unique way that you act, there’s no real …