yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Sampling distribution of the difference in sample proportions -Probability example


3m read
·Nov 10, 2024

In a previous video, we explored the sampling distribution that we got when we took the difference between sample proportions. In that video, we described the distribution in terms of its mean, standard deviation, and shape. What we're going to do in this video is build on that example and try to answer a little bit more about it.

So, in this situation, what we want to do is find the probability, given that we already know about this sampling distribution's mean, standard deviation, and shape. We want to find the probability that the sample proportion of defects from plant B is greater than the sample proportion from plant A. So pause this video and see if you can figure this out.

All right, now let's do this together. So, first of all, let's just interpret what this is: the probability that the sample proportion of defects from plant B is greater than the sample proportion from plant A. If the sample proportion from plant B is greater than the proportion from plant A, then the difference between the sample proportions is going to be negative.

So, this is equivalent to the probability that the difference of the sample proportions—so the sample proportion from A minus the sample proportion from B—is going to be less than zero. Another way to think about it: that's going to be this area right over here.

Now, there are a bunch of ways that we can figure out this area, but the easiest—or one of the easiest, I guess, there are many different ways to do it—is to figure out how many, up to and including, how many standard deviations below the mean this is. Then we could use a z-table.

So, what we just have to do is figure out what the z value is here. And the z value here, we just have to say, “Well, how many standard deviations below the mean is this?” I'll do it up here, let me square this off so I don't make it too messy.

Z is going to be equal to... So, we are negative 0.02 from the mean or we're 0.02 to the left of the mean. So, I'll just do negative 0.02 and then over the standard deviation, which is 0.025. This is going to be equal to... Get a calculator here. We get 0.02 divided by 0.025, which is equal to that. And we are, of course, going to be to the left of the mean, so our z is going to be approximately negative 0.8.

I'm saying approximately because this was approximate over here when we figured out the standard deviation. So, it is negative 0.8, and then we just have to use a z lookup table. If we look at a z lookup table, what we see here is, if we're going to negative 0.8, negative 0.8 is right over here.

So, negative 0.8, and then we have zeros after that. So, we're looking at this right over here: the area under the normal curve up to and including that z value. We always have to make sure that we're looking at the right thing on this standard normal probabilities table right over here.

That gives us 0.21, or we could say this is approximately 21. So, let me get rid of this. And so, we know that this right over here is approximately 21, or we could say 0.21.

So, the probability of the sample proportion of defects from plant B being greater than the sample proportion from plant A is, give or take, roughly one in five.

More Articles

View All
History of the Republican Party | American civics | US government and civics | Khan Academy
Hey Kim, hi David! So, with the Republican National Convention coming up in just a couple of weeks as we’re recording this, you thought it would be like a really good idea to sit down and examine the history of the Republican party. So, what’s going on in…
Identifying corresponding parts of scaled copies | Geometry | 7th grade | Khan Academy
We are told that figure two is a scaled copy of figure one, and we can verify that by comparing corresponding sides. Corresponding sides are sides that have the same relative position; they’re playing the same role in each of the diagrams, even if the dia…
The Discovery That Transformed Pi
This video is about the ridiculous way we used to calculate Pi. For 2000 years, the most successful method was painstakingly slow and tedious, but then Isaac Newton came along and changed the game. You could say he speed-ran Pi, and I’m gonna show you how…
THE END OF CREDIT SCORES | Major Changes Explained
What’s up, Graham? It’s guys here. So, as I’m sure most of you are aware, one of the most important aspects of personal finance, building wealth, and saving a ton of money is your credit score. Those three numbers can very much dictate whether or not you …
The Mind-Blowing Machines that Stamp Millions of Metal Parts - Smarter Every Day 288
That was the moment when you could see everything and understand what’s happening. It’s a hard manufacturing process to describe. I’ve tried to describe it to people in five minutes or less and you just can’t. You can’t. Hey, it’s me, Destin, and welcome…
How to Make an Elephant Explode – The Size of Life 2
Let’s shrink an elephant to the size of a mouse and enlarge a mouse, and make it the size of an elephant, because this is our video, and we want to see what happens. First, our now tiny elephant stumbles around and then drops dead. Tiny elephant buddy is …