yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Radical functions differentiation | Derivative rules | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Let's see if we can take the derivative with respect to (x) of the fourth root of (x^3 + 4x^2 + 7). At first, you might say, "All right, how do I take the derivative of a fourth root of something?" It looks like I have a composite function; I'm taking the fourth root of another expression here. And you'd be right!

If you're dealing with a composite function, the chain rule should be front of mind. But first, let's just make this fourth root a little bit more tractable for us and just realize that this fourth root is really nothing but a fractional exponent. So, this is the same thing as the derivative with respect to (x) of ( (x^3 + 4x^2 + 7)^{1/4} ).

Now, how do we take the derivative of this? Well, we can view this, as I said a few seconds ago, as a composite function. What do we do first with our (x)? Well, we do all of this business, and we could call this (U) (or (U(x))). Then, whatever we get for (U(x)), we raise that to the fourth power.

The way that we would take the derivative is we would take the derivative of this, which you could view as the outer function with respect to (U(x)), and then multiply that times the derivative of (U) with respect to (x). So, let's do that!

This is going to be equal to... So, we are going to take our outside function, which I'm highlighting in green now. So where I take something to the (1/4), I'm going to take the derivative of that with respect to the inside (with respect to (U(x))). Well, I'm just going to use the power rule here; I'm just going to bring that (1/4) out front. So it's going to be ( \frac{1}{4} ) times whatever I'm taking the derivative with respect to raised to the ( \frac{1}{4 - 1} ) power.

Look, all I did is use the power rule here. I didn't have an (x) here. Now I'm taking the derivative with respect to (U(x)), with respect to this polynomial expression here. So I could just throw the (U(x)) in here if I like. Actually, let me just do that. So this is going to be ( (x^3 + 4x^2 + 7)^{1/4} ) and then I want to multiply that. And this is the chain rule; I took the derivative of the outside with respect to the inside, and I'm going to multiply that times the derivative of the inside.

So what's the derivative of (U(x)) or (U')? Let's see, we’re just going to use the power rule a bunch of times. It's going to be (3x^2 + 2 \cdot 4x^{2 - 1}), which is just (8x). And then the derivative with respect to (x) of seven (well, the derivative with respect to (x) of a constant) is just going to be zero. So that's (U'(x)).

So then I'm just going to multiply by (U'(x)), which is (3x^2 + 8x).

I can clean this up a little bit. So this would be equal to, actually, let me just rewrite that exponent there. So (1/4 - 1) I can rewrite as (-\frac{3}{4}) power. And you could manipulate this in different ways if you like, but the key is to just recognize that this is an application of the chain rule: the derivative of the outside with respect to the inside.

That's what we did here, times the derivative of the inside with respect to (x). So if someone were to tell you, "All right, (f(x) = \frac{1}{4}) root of (x^3 + 4x^2 + 7)," and then they said, "Well, what is (f’(-3))?" Well, you would evaluate this at (-3).

So let me just do that. So it's (\frac{1}{4} \times (-27 + 36 + 7)^{-\frac{3}{4}}). What does this result to? This right over here is (16). Right? So (-27 + 7) is (-20) plus (36), so this is (16).

I think this is going to work out nicely. Then times (3 \times (-3)^2), which is (3 \cdot 9) which is (27), minus (24). So this is going to be... right over here... that is going to be (3).

Now, what is (16^{-\frac{3}{4}})? So let me... (= \frac{1}{4}). So (16^{\frac{1}{4}} = 2), and then you raise that to... let me, actually, I don't want to skip steps here, but at this point we are dealing with algebra or maybe even pre-algebra.

So this is going to be times (16^{\frac{1}{4}}), and then we’re going to raise that to the (-3) times that three out front. So we could put that three there. (16^{\frac{1}{4}}) is (2). (2^3) is (8). So (2^{-\frac{3}{4}} = \frac{1}{8}).

So we have (3/4) times ( \frac{1}{8}), which is equal to ( \frac{3}{32} ).

So that would be the slope of the tangent line of the graph (y = f(x)) when (x = -3).

More Articles

View All
The Most Complex Language in the World
You are cells: your muscles, organs, skin, and hair. They are in your blood and in your bones. Cells are biological robots. They don’t want anything; they don’t feel anything. They are never sad or happy; they just are right here, right now. They’re as co…
Impeachment | Foundations of American democracy | US government and civics | Khan Academy
What we’re going to focus on in this video is the idea of impeachment: what it is and how it works, and with a little bit of historical background. So before we go into impeachment, let’s just review some key ideas about the US government. We have this i…
15 Ways To ADOPT a RICH MINDSET
Becoming rich is not just about getting a new job, moving to another city, or investing in tech and cryptocurrency. But becoming wealthy requires more than a change in financial habits; it also requires a change in mindset. If your mind isn’t geared towar…
The Most Extreme Explosion in the Universe
Supernovae are the most powerful explosions in the universe, unleashing enough energy to outshine galaxies. We have no real metaphor for their power. If the sun were to magically go supernova, it would feel like you were being hit by the energy of a nucle…
Startup Investor School Day 2 Live Stream
Hey good morning! Thank you. We have a lot to do today, so I’d like to get my part out of the way as quickly as possible. Good morning again and welcome to our second day of Startup Investor School. My role is a little bit more, but not much more, than te…
Dataset individuals and categorical variables
So we have this question that says millions of Americans rely on caffeine to get them up in the morning, and that is probably true. Although for me, if I drink even a little bit of caffeine in the morning, I won’t be able to sleep that night. Here’s nutri…