yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Radical functions differentiation | Derivative rules | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Let's see if we can take the derivative with respect to (x) of the fourth root of (x^3 + 4x^2 + 7). At first, you might say, "All right, how do I take the derivative of a fourth root of something?" It looks like I have a composite function; I'm taking the fourth root of another expression here. And you'd be right!

If you're dealing with a composite function, the chain rule should be front of mind. But first, let's just make this fourth root a little bit more tractable for us and just realize that this fourth root is really nothing but a fractional exponent. So, this is the same thing as the derivative with respect to (x) of ( (x^3 + 4x^2 + 7)^{1/4} ).

Now, how do we take the derivative of this? Well, we can view this, as I said a few seconds ago, as a composite function. What do we do first with our (x)? Well, we do all of this business, and we could call this (U) (or (U(x))). Then, whatever we get for (U(x)), we raise that to the fourth power.

The way that we would take the derivative is we would take the derivative of this, which you could view as the outer function with respect to (U(x)), and then multiply that times the derivative of (U) with respect to (x). So, let's do that!

This is going to be equal to... So, we are going to take our outside function, which I'm highlighting in green now. So where I take something to the (1/4), I'm going to take the derivative of that with respect to the inside (with respect to (U(x))). Well, I'm just going to use the power rule here; I'm just going to bring that (1/4) out front. So it's going to be ( \frac{1}{4} ) times whatever I'm taking the derivative with respect to raised to the ( \frac{1}{4 - 1} ) power.

Look, all I did is use the power rule here. I didn't have an (x) here. Now I'm taking the derivative with respect to (U(x)), with respect to this polynomial expression here. So I could just throw the (U(x)) in here if I like. Actually, let me just do that. So this is going to be ( (x^3 + 4x^2 + 7)^{1/4} ) and then I want to multiply that. And this is the chain rule; I took the derivative of the outside with respect to the inside, and I'm going to multiply that times the derivative of the inside.

So what's the derivative of (U(x)) or (U')? Let's see, we’re just going to use the power rule a bunch of times. It's going to be (3x^2 + 2 \cdot 4x^{2 - 1}), which is just (8x). And then the derivative with respect to (x) of seven (well, the derivative with respect to (x) of a constant) is just going to be zero. So that's (U'(x)).

So then I'm just going to multiply by (U'(x)), which is (3x^2 + 8x).

I can clean this up a little bit. So this would be equal to, actually, let me just rewrite that exponent there. So (1/4 - 1) I can rewrite as (-\frac{3}{4}) power. And you could manipulate this in different ways if you like, but the key is to just recognize that this is an application of the chain rule: the derivative of the outside with respect to the inside.

That's what we did here, times the derivative of the inside with respect to (x). So if someone were to tell you, "All right, (f(x) = \frac{1}{4}) root of (x^3 + 4x^2 + 7)," and then they said, "Well, what is (f’(-3))?" Well, you would evaluate this at (-3).

So let me just do that. So it's (\frac{1}{4} \times (-27 + 36 + 7)^{-\frac{3}{4}}). What does this result to? This right over here is (16). Right? So (-27 + 7) is (-20) plus (36), so this is (16).

I think this is going to work out nicely. Then times (3 \times (-3)^2), which is (3 \cdot 9) which is (27), minus (24). So this is going to be... right over here... that is going to be (3).

Now, what is (16^{-\frac{3}{4}})? So let me... (= \frac{1}{4}). So (16^{\frac{1}{4}} = 2), and then you raise that to... let me, actually, I don't want to skip steps here, but at this point we are dealing with algebra or maybe even pre-algebra.

So this is going to be times (16^{\frac{1}{4}}), and then we’re going to raise that to the (-3) times that three out front. So we could put that three there. (16^{\frac{1}{4}}) is (2). (2^3) is (8). So (2^{-\frac{3}{4}} = \frac{1}{8}).

So we have (3/4) times ( \frac{1}{8}), which is equal to ( \frac{3}{32} ).

So that would be the slope of the tangent line of the graph (y = f(x)) when (x = -3).

More Articles

View All
YC SUS: Eric Migicovsky hosts founder office hours
Cool! I think so, yeah. Hi everyone, my name is Eric Michalski. Whoops! I just got a gift from Zune. My name is Eric Michalski. I’m a partner here at Y Combinator, and I’m the course facilitator for Startup School. Welcome to a new experiment that we’re g…
We Are Qualitatively Different From Other Species
Now you’re pointing out a minority opinion there. I think culture is still stuck in the second part of what you were saying. Originally, we thought that we were at the center of the universe. This was the religious conception of man’s place in the cosmos.…
Spend More Time Making the Big Decisions
Uh, best piece of advice for someone 24 or a new Millennial, uh, out of college, I would say, you know, just spend more time on making the big decisions. There’s basically three really big decisions that you make around that age: it’s where you live, who…
WET DOGS ---- IMG! #40
Blockhead bunnies and disembodied cat unicorn princesses. It’s episode 40 of IMG! You’ve gotta be careful around ducks. Seriously. But it’s okay to be smug with a panda. If you’ve got extra time, carve Lincoln out of Oreo filling. Or check out more of Sa…
9 Passive Income Ideas-How I make $7500/Week
In this video, I’m going to write 9 passive income ideas based on how hard it is to get started and how hard it is to maintain and make money from it. These days, I’ve been averaging around 30k to 40k USD monthly, and by the end of the year, we’re expecti…
15 Things To Do Before 11AM To Win the Day
Hey there, Alexir! Now, tell me, how many times have you said, “I wish I had more time in the day”? You’ve got about 16 hours, 960 active minutes, in your day. Are you using that time wisely? Really getting the most out of it? Because if you are, then by …