yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Radical functions differentiation | Derivative rules | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Let's see if we can take the derivative with respect to (x) of the fourth root of (x^3 + 4x^2 + 7). At first, you might say, "All right, how do I take the derivative of a fourth root of something?" It looks like I have a composite function; I'm taking the fourth root of another expression here. And you'd be right!

If you're dealing with a composite function, the chain rule should be front of mind. But first, let's just make this fourth root a little bit more tractable for us and just realize that this fourth root is really nothing but a fractional exponent. So, this is the same thing as the derivative with respect to (x) of ( (x^3 + 4x^2 + 7)^{1/4} ).

Now, how do we take the derivative of this? Well, we can view this, as I said a few seconds ago, as a composite function. What do we do first with our (x)? Well, we do all of this business, and we could call this (U) (or (U(x))). Then, whatever we get for (U(x)), we raise that to the fourth power.

The way that we would take the derivative is we would take the derivative of this, which you could view as the outer function with respect to (U(x)), and then multiply that times the derivative of (U) with respect to (x). So, let's do that!

This is going to be equal to... So, we are going to take our outside function, which I'm highlighting in green now. So where I take something to the (1/4), I'm going to take the derivative of that with respect to the inside (with respect to (U(x))). Well, I'm just going to use the power rule here; I'm just going to bring that (1/4) out front. So it's going to be ( \frac{1}{4} ) times whatever I'm taking the derivative with respect to raised to the ( \frac{1}{4 - 1} ) power.

Look, all I did is use the power rule here. I didn't have an (x) here. Now I'm taking the derivative with respect to (U(x)), with respect to this polynomial expression here. So I could just throw the (U(x)) in here if I like. Actually, let me just do that. So this is going to be ( (x^3 + 4x^2 + 7)^{1/4} ) and then I want to multiply that. And this is the chain rule; I took the derivative of the outside with respect to the inside, and I'm going to multiply that times the derivative of the inside.

So what's the derivative of (U(x)) or (U')? Let's see, we’re just going to use the power rule a bunch of times. It's going to be (3x^2 + 2 \cdot 4x^{2 - 1}), which is just (8x). And then the derivative with respect to (x) of seven (well, the derivative with respect to (x) of a constant) is just going to be zero. So that's (U'(x)).

So then I'm just going to multiply by (U'(x)), which is (3x^2 + 8x).

I can clean this up a little bit. So this would be equal to, actually, let me just rewrite that exponent there. So (1/4 - 1) I can rewrite as (-\frac{3}{4}) power. And you could manipulate this in different ways if you like, but the key is to just recognize that this is an application of the chain rule: the derivative of the outside with respect to the inside.

That's what we did here, times the derivative of the inside with respect to (x). So if someone were to tell you, "All right, (f(x) = \frac{1}{4}) root of (x^3 + 4x^2 + 7)," and then they said, "Well, what is (f’(-3))?" Well, you would evaluate this at (-3).

So let me just do that. So it's (\frac{1}{4} \times (-27 + 36 + 7)^{-\frac{3}{4}}). What does this result to? This right over here is (16). Right? So (-27 + 7) is (-20) plus (36), so this is (16).

I think this is going to work out nicely. Then times (3 \times (-3)^2), which is (3 \cdot 9) which is (27), minus (24). So this is going to be... right over here... that is going to be (3).

Now, what is (16^{-\frac{3}{4}})? So let me... (= \frac{1}{4}). So (16^{\frac{1}{4}} = 2), and then you raise that to... let me, actually, I don't want to skip steps here, but at this point we are dealing with algebra or maybe even pre-algebra.

So this is going to be times (16^{\frac{1}{4}}), and then we’re going to raise that to the (-3) times that three out front. So we could put that three there. (16^{\frac{1}{4}}) is (2). (2^3) is (8). So (2^{-\frac{3}{4}} = \frac{1}{8}).

So we have (3/4) times ( \frac{1}{8}), which is equal to ( \frac{3}{32} ).

So that would be the slope of the tangent line of the graph (y = f(x)) when (x = -3).

More Articles

View All
Explosive Bat in Slow Motion Ft. Stuff Made Here - Smarter Every Day 245
I feel like we don’t know each other well enough to be doing this right now. This is how you get to know each other. (laughs) I’m ready. All right, three, two, one. (bat fires) What up? I’m Destin, this video is amazing. This baseball says world’s lon…
15 Things That are Mutually Exclusive in Life
Some of you are living in a paradox of choice. You desire something, but you take the exact opposite actions that would lead to that outcome. Some outcomes are mutually exclusive. Mutually exclusive means if a coin lands on heads, it cannot simultaneously…
Meet the Intimidating Eel That Mates For Life | National Geographic
Okay, so this is a wool feel. As anything named after a wolf would suggest, they are intimidating master predators. You may see the way this guy chomps down on a sea urchin like it just doesn’t even feel its spines on its throat. His teeth are pretty worn…
15 Power Moves to Take Control and Build an Off Grid Empire
Hey there, my friend. Let’s run away together. Let’s run away from the control of traditional financial, health care, and resource systems and take control of our own lives for a change. Now, the appeal of living off-grid has skyrocketed in the last few …
Multiplying 1-digit numbers by 10, 100, and 1000 | Math | 4th grade | Khan Academy
Let’s talk about multiplying by 10, 100, and 1,000. There’s some cool number patterns that happen with each of these, so let’s start here with something like 4 * 10—one that maybe we’re comfortable with or already know. 4 * 10 would be the same as saying…
Explained: Beaker Ball Balance Problem
You have made your prediction, and now it is time to see what happens when I release the balance. Ready? In three, two, one. The balance tips towards the right, towards the hanging, heavier ball. But why does this happen? Well, the best way I can think o…