yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Finding points with vertical tangents


3m read
·Nov 11, 2024

Consider the closed curve in the xy plane given by this expression. Here, find the coordinates of the two points on the curve where the line tangent to the curve is vertical. So, pause this video and see if you could have a go at it.

I don't know what the exact shape of this closed curve is, but if I were to draw some type of a closed curve, maybe it looks something like this. This isn't the one that's right over here. This one also has two points where my tangent line is vertical. At one point would be right over there; another point would be right over there.

Now, how do we figure this out? Well, what we could do is use implicit differentiation to find the derivative of y with respect to x and think about the x and y values that would give us a situation where that derivative is non-zero in the numerator and zero in the denominator. So let's do that.

Let me rewrite everything I have: (x^2 + 2x + y^4 + 4y = 5). I want to take the derivative with respect to x of both sides of this equation. I'm trying to find an expression for the derivative of y with respect to x. So what am I going to get? This is going to be equal to (2x + 2 +) the derivative of this with respect to y is (4y^3) and then times the derivative of y with respect to x; that's just straight out of the chain rule. Plus, the derivative of this with respect to y is (4) times the derivative of y with respect to x—once again straight out of the chain rule—is equal to, whoops, I want to take the derivative with respect to x here, is equal to (0).

Now we just have to solve for (\frac{dy}{dx}). A couple of things we could do: we could take the (2x + 2) and subtract it from both sides, and we could also factor out a (4\frac{dy}{dx}) out of this stuff right over here. So let's do that: let's subtract the (2x + 2) from both sides and factor out the (4\frac{dy}{dx}).

We will get (4 \cdot \frac{dy}{dx} \cdot (y^3 + 1) = -2(x + 1)). Now I just have to divide both sides by (4(y^3 + 1)), and I'm going to get the derivative of y with respect to x is equal to (\frac{-2(x + 1)}{4(y^3 + 1)}). Actually, this can be rewritten as being equal to (-\frac{x + 1}{2(y^3 + 1)}); I just divided the numerator and the denominator by (2).

Now, why is this useful? Well, we can think about what y-values—because y is the only variable we have in the denominator here—would make the denominator equal (0) and then find the corresponding x-values for those y-values by going to our original equation.

Well, this is going to be (0) when (y = -1). So when (y = -1), let's figure out what x is. To do that we just have to substitute (y = -1) back in our original equation and then solve for x.

Let's do that; let me clear this out since I need that real estate. If we go back and we substitute (y = -1) up here, we're going to get:

[ x^2 + 2x + 1 + 1 - 4 = 5. ]
This is going to be (-3). Subtract (5) from both sides, you get (x^2 + 2x - 8 = 0). This is just simple factoring, so it's going to be ((x + 4)(x - 2) = 0).

What two numbers, when I take the product, I get (-8)? Four and negative two. When I add four and negative two, I get a positive (2); there it is equal to (0). So (x) is equal to (-4) or (x) is equal to (2) when (y) is equal to (-1).

To answer their question, find the coordinates of the two points on the curve where the line tangent to the curve is vertical. Well, the answer here would be—get a little bit of a drum roll—it would be the points ((-4, -1)) and ((2, -1)), and we're done.

More Articles

View All
How meditation can change your life and mind | Sam Harris, Jon Kabat-Zinn & more | Big Think
RASMUS HOUGAARD: There is a general huge misconception around mindfulness. Many people think that mindfulness is a spiritual thing. Many think that it’s a private thing that we do at home, and most people think that mindfulness is about slowing down. That…
Your Favorite Youtuber Will Soon Be Replaced By AI
How do you know that the voice you’re hearing right now is human? Most of you have no idea what I look like, so how can you tell I’m a real person? What if your favorite YouTuber is actually an AI? 2023 is shaping up to be the year of artificial intellig…
Khan Academy Ed Talks with Begoña Vila, PhD - Thursday October 13
Hello and welcome to Ed Talks with Khan Academy. I’m Kristen Deserva, the Chief Learning Officer at Khan Academy, and today I’m excited to welcome Dr. Begonia Villa, who is an astrophysicist and the lead systems engineer for two of the instruments on the …
2015 AP Chemistry free response 2f
During the dehydration experiment, Ethan gas and unreacted ethanol passed through the tube into the water. The ethine was quantitatively collected as a gas, but the unreacted ethanol was not. Explain this observation in terms of the intermolecular forces …
How To Find A Life Game Worth Playing
Hello Aluxer, welcome back. Now, what if we told you that what you see around you and what you’re doing right now is not actually real? And no, okay, this isn’t a VCR video, but more of an interesting way to see life, a way that, well, it might just help …
Misconceptions About the Universe
There was a time when the universe was expanding so rapidly that parts of it were moving apart from each other faster than the speed of light. That time is right now. A lot of people make a big deal out of the fact that during inflation, right after our u…