yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Finding points with vertical tangents


3m read
·Nov 11, 2024

Consider the closed curve in the xy plane given by this expression. Here, find the coordinates of the two points on the curve where the line tangent to the curve is vertical. So, pause this video and see if you could have a go at it.

I don't know what the exact shape of this closed curve is, but if I were to draw some type of a closed curve, maybe it looks something like this. This isn't the one that's right over here. This one also has two points where my tangent line is vertical. At one point would be right over there; another point would be right over there.

Now, how do we figure this out? Well, what we could do is use implicit differentiation to find the derivative of y with respect to x and think about the x and y values that would give us a situation where that derivative is non-zero in the numerator and zero in the denominator. So let's do that.

Let me rewrite everything I have: (x^2 + 2x + y^4 + 4y = 5). I want to take the derivative with respect to x of both sides of this equation. I'm trying to find an expression for the derivative of y with respect to x. So what am I going to get? This is going to be equal to (2x + 2 +) the derivative of this with respect to y is (4y^3) and then times the derivative of y with respect to x; that's just straight out of the chain rule. Plus, the derivative of this with respect to y is (4) times the derivative of y with respect to x—once again straight out of the chain rule—is equal to, whoops, I want to take the derivative with respect to x here, is equal to (0).

Now we just have to solve for (\frac{dy}{dx}). A couple of things we could do: we could take the (2x + 2) and subtract it from both sides, and we could also factor out a (4\frac{dy}{dx}) out of this stuff right over here. So let's do that: let's subtract the (2x + 2) from both sides and factor out the (4\frac{dy}{dx}).

We will get (4 \cdot \frac{dy}{dx} \cdot (y^3 + 1) = -2(x + 1)). Now I just have to divide both sides by (4(y^3 + 1)), and I'm going to get the derivative of y with respect to x is equal to (\frac{-2(x + 1)}{4(y^3 + 1)}). Actually, this can be rewritten as being equal to (-\frac{x + 1}{2(y^3 + 1)}); I just divided the numerator and the denominator by (2).

Now, why is this useful? Well, we can think about what y-values—because y is the only variable we have in the denominator here—would make the denominator equal (0) and then find the corresponding x-values for those y-values by going to our original equation.

Well, this is going to be (0) when (y = -1). So when (y = -1), let's figure out what x is. To do that we just have to substitute (y = -1) back in our original equation and then solve for x.

Let's do that; let me clear this out since I need that real estate. If we go back and we substitute (y = -1) up here, we're going to get:

[ x^2 + 2x + 1 + 1 - 4 = 5. ]
This is going to be (-3). Subtract (5) from both sides, you get (x^2 + 2x - 8 = 0). This is just simple factoring, so it's going to be ((x + 4)(x - 2) = 0).

What two numbers, when I take the product, I get (-8)? Four and negative two. When I add four and negative two, I get a positive (2); there it is equal to (0). So (x) is equal to (-4) or (x) is equal to (2) when (y) is equal to (-1).

To answer their question, find the coordinates of the two points on the curve where the line tangent to the curve is vertical. Well, the answer here would be—get a little bit of a drum roll—it would be the points ((-4, -1)) and ((2, -1)), and we're done.

More Articles

View All
5 ways to avoid taxes...legally
What’s up, you guys? It’s Graham here. So, the time is fast approaching, and that would be the dreaded April 15th tax deadline. This is the deadline for filing your tax return and submitting any payment you might owe to the IRS or to the state. I get it;…
Transformations, part 1 | Multivariable calculus | Khan Academy
So I have talked a lot about different ways that you can visualize multi-variable functions. Functions that will have some kind of multi-dimensional input or output. These include three-dimensional graphs, which are very common, contour maps, vector field…
College Board's Lorraine Hastings on preparing for the SAT during school closure | Homeroom with Sal
Hello! Welcome to our daily homeroom live stream. For those of y’all who are new to this, this is a live stream that we’re doing every day, as the name implies, to keep us connected and answer questions and figure out ways to support each other during the…
Chase Adam at Startup School NY 2014
Chase Adams, the founder of Watsi. Watsi is the crowdfunding platform for healthcare that lets anyone donate as little as $5 to fund medical care for people in need. So before starting Watsi, Chase traveled, worked, and studied in more than 20 countries. …
Why Democracy Is Mathematically Impossible
Democracy might be mathematically impossible. (serious music) This isn’t a value judgment, a comment about human nature, nor a statement about how rare and unstable democratic societies have been in the history of civilization. Our current attempt at demo…
My BEST techniques for a successful Open House
What’s up you guys! It’s Grand here. So, I’m finishing up an open house right now, and I thought, what better time than right now to make a video about how to hold an open house? So, I’m going to be sharing my tips, my tricks, and some of the things that …