yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Finding points with vertical tangents


3m read
·Nov 11, 2024

Consider the closed curve in the xy plane given by this expression. Here, find the coordinates of the two points on the curve where the line tangent to the curve is vertical. So, pause this video and see if you could have a go at it.

I don't know what the exact shape of this closed curve is, but if I were to draw some type of a closed curve, maybe it looks something like this. This isn't the one that's right over here. This one also has two points where my tangent line is vertical. At one point would be right over there; another point would be right over there.

Now, how do we figure this out? Well, what we could do is use implicit differentiation to find the derivative of y with respect to x and think about the x and y values that would give us a situation where that derivative is non-zero in the numerator and zero in the denominator. So let's do that.

Let me rewrite everything I have: (x^2 + 2x + y^4 + 4y = 5). I want to take the derivative with respect to x of both sides of this equation. I'm trying to find an expression for the derivative of y with respect to x. So what am I going to get? This is going to be equal to (2x + 2 +) the derivative of this with respect to y is (4y^3) and then times the derivative of y with respect to x; that's just straight out of the chain rule. Plus, the derivative of this with respect to y is (4) times the derivative of y with respect to x—once again straight out of the chain rule—is equal to, whoops, I want to take the derivative with respect to x here, is equal to (0).

Now we just have to solve for (\frac{dy}{dx}). A couple of things we could do: we could take the (2x + 2) and subtract it from both sides, and we could also factor out a (4\frac{dy}{dx}) out of this stuff right over here. So let's do that: let's subtract the (2x + 2) from both sides and factor out the (4\frac{dy}{dx}).

We will get (4 \cdot \frac{dy}{dx} \cdot (y^3 + 1) = -2(x + 1)). Now I just have to divide both sides by (4(y^3 + 1)), and I'm going to get the derivative of y with respect to x is equal to (\frac{-2(x + 1)}{4(y^3 + 1)}). Actually, this can be rewritten as being equal to (-\frac{x + 1}{2(y^3 + 1)}); I just divided the numerator and the denominator by (2).

Now, why is this useful? Well, we can think about what y-values—because y is the only variable we have in the denominator here—would make the denominator equal (0) and then find the corresponding x-values for those y-values by going to our original equation.

Well, this is going to be (0) when (y = -1). So when (y = -1), let's figure out what x is. To do that we just have to substitute (y = -1) back in our original equation and then solve for x.

Let's do that; let me clear this out since I need that real estate. If we go back and we substitute (y = -1) up here, we're going to get:

[ x^2 + 2x + 1 + 1 - 4 = 5. ]
This is going to be (-3). Subtract (5) from both sides, you get (x^2 + 2x - 8 = 0). This is just simple factoring, so it's going to be ((x + 4)(x - 2) = 0).

What two numbers, when I take the product, I get (-8)? Four and negative two. When I add four and negative two, I get a positive (2); there it is equal to (0). So (x) is equal to (-4) or (x) is equal to (2) when (y) is equal to (-1).

To answer their question, find the coordinates of the two points on the curve where the line tangent to the curve is vertical. Well, the answer here would be—get a little bit of a drum roll—it would be the points ((-4, -1)) and ((2, -1)), and we're done.

More Articles

View All
Matter and energy in food webs | Middle school biology | Khan Academy
In this video, we’re going to talk about food webs, which is really just a way of picturing how all of the matter and how all of the energy flows inside of an ecosystem. Now, when I talk about matter, I’m talking about the atoms in an ecosystem, the molec…
Pangolins: The Most Trafficked Mammal You've Never Heard Of | National Geographic
[Music] The world’s most trafficked mammal is one you may have never even heard of: the pangolin. Despite its lizard-like appearance, the pangolin is indeed a mammal. Some pangolins are as small as a house cat, while others are as big as a medium-sized do…
Rescuing a 14 Ton Bread Truck | Ice Road Rescue
NARRATOR: In the south, a 14-ton bread truck is impaled on rocks. Thord and Andrzej were attempting to lift it clear until it threatened to crash back down with Thord underneath. [bleep] that bloody left bar right there. [tools clanging] You know, we have…
Photographer | Official Trailer | National Geographic
[Music] Look, the only way you can change the world is with stories. People really want to know what it feels like to be a photographer, right? Shoulder down, there we go. Obviously, there’s a risk involved. It’s this ying-yang of danger and this incredib…
"Why I Started MINING My Own BITCOIN!" (Millionaire Bitcoin Advice) | Kevin O'Leary
We don’t think you should own coin made in China. I said the only way I can possibly not own kind of China coin is to make it myself. So, new game plan: every coin I’m going to own, I’m going to know where it came from, when it was created, and it’s goin…
Why is Deadly Weather Mesmerizing? | StarTalk
Well, in the same way that CNN does very well in their ratings when there’s war, the Weather Channel does really well when there’s extreme weather. Right. So people love watching extreme weather—the tornadoes—it’s mesmerizing. Hurricanes. Absolutely. And …