yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Finding points with vertical tangents


3m read
·Nov 11, 2024

Consider the closed curve in the xy plane given by this expression. Here, find the coordinates of the two points on the curve where the line tangent to the curve is vertical. So, pause this video and see if you could have a go at it.

I don't know what the exact shape of this closed curve is, but if I were to draw some type of a closed curve, maybe it looks something like this. This isn't the one that's right over here. This one also has two points where my tangent line is vertical. At one point would be right over there; another point would be right over there.

Now, how do we figure this out? Well, what we could do is use implicit differentiation to find the derivative of y with respect to x and think about the x and y values that would give us a situation where that derivative is non-zero in the numerator and zero in the denominator. So let's do that.

Let me rewrite everything I have: (x^2 + 2x + y^4 + 4y = 5). I want to take the derivative with respect to x of both sides of this equation. I'm trying to find an expression for the derivative of y with respect to x. So what am I going to get? This is going to be equal to (2x + 2 +) the derivative of this with respect to y is (4y^3) and then times the derivative of y with respect to x; that's just straight out of the chain rule. Plus, the derivative of this with respect to y is (4) times the derivative of y with respect to x—once again straight out of the chain rule—is equal to, whoops, I want to take the derivative with respect to x here, is equal to (0).

Now we just have to solve for (\frac{dy}{dx}). A couple of things we could do: we could take the (2x + 2) and subtract it from both sides, and we could also factor out a (4\frac{dy}{dx}) out of this stuff right over here. So let's do that: let's subtract the (2x + 2) from both sides and factor out the (4\frac{dy}{dx}).

We will get (4 \cdot \frac{dy}{dx} \cdot (y^3 + 1) = -2(x + 1)). Now I just have to divide both sides by (4(y^3 + 1)), and I'm going to get the derivative of y with respect to x is equal to (\frac{-2(x + 1)}{4(y^3 + 1)}). Actually, this can be rewritten as being equal to (-\frac{x + 1}{2(y^3 + 1)}); I just divided the numerator and the denominator by (2).

Now, why is this useful? Well, we can think about what y-values—because y is the only variable we have in the denominator here—would make the denominator equal (0) and then find the corresponding x-values for those y-values by going to our original equation.

Well, this is going to be (0) when (y = -1). So when (y = -1), let's figure out what x is. To do that we just have to substitute (y = -1) back in our original equation and then solve for x.

Let's do that; let me clear this out since I need that real estate. If we go back and we substitute (y = -1) up here, we're going to get:

[ x^2 + 2x + 1 + 1 - 4 = 5. ]
This is going to be (-3). Subtract (5) from both sides, you get (x^2 + 2x - 8 = 0). This is just simple factoring, so it's going to be ((x + 4)(x - 2) = 0).

What two numbers, when I take the product, I get (-8)? Four and negative two. When I add four and negative two, I get a positive (2); there it is equal to (0). So (x) is equal to (-4) or (x) is equal to (2) when (y) is equal to (-1).

To answer their question, find the coordinates of the two points on the curve where the line tangent to the curve is vertical. Well, the answer here would be—get a little bit of a drum roll—it would be the points ((-4, -1)) and ((2, -1)), and we're done.

More Articles

View All
Captain Cook Snags a Big Tuna | Wicked Tuna | National Geographic
Getting anything better down there, Johnny? A lot of bent rods. So we’re just getting set up right now on the Regal Sword. We made the move down from Crab Ledge last night. Might just set up right in here. Yeah. You know, you just get panic in panic mode…
Navigating the High Cost of Housing | National Geographic
(traffic passing by) [Man] The hardest part was just kind of feeling like I was a failure. (building music) Why am I sleeping here with my kids in my car? (soft music) We’ve seen a great shift in the last few years as we came out of the recession where i…
Ray Dalio and Elliot Choy on Why Money Shouldn't be an End Goal
Or do you ever see people around you that make the mistake of thinking that money is the actual goal? Then they maybe got into it aiming to achieve freedom or these other things, security. But then they are just so caught up in moving that goal post that …
How Startup Fundraising Works | Startup School
Foreign [Music] I’m Brad Flora. I’m a group partner here at YC, and I’m going to be talking about how startup fundraising works today. Like I said, I’m a group partner at YC, and what that means is that I read applications, I interview the startups that …
Fisherman With No Fish | Years of Living Dangerously
Through frequent dive trips to Appo Island, Renee has befriended many of the locals. Come over here, John Zenan is a third-generation fisherman who has spent his entire life on the island, living off its resources. He and his son Jory make daily trips to …
Judicial activism and judicial restraint | US government and civics | Khan Academy
What we’re going to do in this video is talk about the terms judicial activism and judicial restraint. In many videos, we have talked about how the judicial branch, one of its main powers, is to be a check on the executive and legislative branch; that it …