yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Finding points with vertical tangents


3m read
·Nov 11, 2024

Consider the closed curve in the xy plane given by this expression. Here, find the coordinates of the two points on the curve where the line tangent to the curve is vertical. So, pause this video and see if you could have a go at it.

I don't know what the exact shape of this closed curve is, but if I were to draw some type of a closed curve, maybe it looks something like this. This isn't the one that's right over here. This one also has two points where my tangent line is vertical. At one point would be right over there; another point would be right over there.

Now, how do we figure this out? Well, what we could do is use implicit differentiation to find the derivative of y with respect to x and think about the x and y values that would give us a situation where that derivative is non-zero in the numerator and zero in the denominator. So let's do that.

Let me rewrite everything I have: (x^2 + 2x + y^4 + 4y = 5). I want to take the derivative with respect to x of both sides of this equation. I'm trying to find an expression for the derivative of y with respect to x. So what am I going to get? This is going to be equal to (2x + 2 +) the derivative of this with respect to y is (4y^3) and then times the derivative of y with respect to x; that's just straight out of the chain rule. Plus, the derivative of this with respect to y is (4) times the derivative of y with respect to x—once again straight out of the chain rule—is equal to, whoops, I want to take the derivative with respect to x here, is equal to (0).

Now we just have to solve for (\frac{dy}{dx}). A couple of things we could do: we could take the (2x + 2) and subtract it from both sides, and we could also factor out a (4\frac{dy}{dx}) out of this stuff right over here. So let's do that: let's subtract the (2x + 2) from both sides and factor out the (4\frac{dy}{dx}).

We will get (4 \cdot \frac{dy}{dx} \cdot (y^3 + 1) = -2(x + 1)). Now I just have to divide both sides by (4(y^3 + 1)), and I'm going to get the derivative of y with respect to x is equal to (\frac{-2(x + 1)}{4(y^3 + 1)}). Actually, this can be rewritten as being equal to (-\frac{x + 1}{2(y^3 + 1)}); I just divided the numerator and the denominator by (2).

Now, why is this useful? Well, we can think about what y-values—because y is the only variable we have in the denominator here—would make the denominator equal (0) and then find the corresponding x-values for those y-values by going to our original equation.

Well, this is going to be (0) when (y = -1). So when (y = -1), let's figure out what x is. To do that we just have to substitute (y = -1) back in our original equation and then solve for x.

Let's do that; let me clear this out since I need that real estate. If we go back and we substitute (y = -1) up here, we're going to get:

[ x^2 + 2x + 1 + 1 - 4 = 5. ]
This is going to be (-3). Subtract (5) from both sides, you get (x^2 + 2x - 8 = 0). This is just simple factoring, so it's going to be ((x + 4)(x - 2) = 0).

What two numbers, when I take the product, I get (-8)? Four and negative two. When I add four and negative two, I get a positive (2); there it is equal to (0). So (x) is equal to (-4) or (x) is equal to (2) when (y) is equal to (-1).

To answer their question, find the coordinates of the two points on the curve where the line tangent to the curve is vertical. Well, the answer here would be—get a little bit of a drum roll—it would be the points ((-4, -1)) and ((2, -1)), and we're done.

More Articles

View All
Adding vectors in magnitude and direction form | Vectors | Precalculus | Khan Academy
We’re told that vector A has magnitude 4 in direction 170 degrees from the positive x-axis. Vector B has magnitude 3 in direction 240 degrees from the positive x-axis. Find the magnitude and direction of vector A plus vector B. So pause this video and see…
Multiplying rational expressions | Precalculus | Khan Academy
So what I have here is an expression where I’m multiplying rational expressions, and we want to do this multiplication and then reduce to the lowest term. So if you feel so inspired, I encourage you to pause this video and see if you can have a go at that…
The Secrets To Setting Smarter Goals
Did you learn calculus and then get GA, or did you cheat and get the A? Like, it’s like you know the answer to that question. Yeah, like the A isn’t the goal; it’s the representation of your knowledge and your mastery. This is Michael Seibel with Dalton …
Is Regulation A Threat To Bitcoin? | Bitcoin Magazine
It’s not what I want or you want; it’s what the institutions want. Institutions that are just stepping in or considering getting involved in allocating to crypto want one thing: Bitcoin. We’re not gonna print two trillion dollars worth of paper; that curr…
How One Line in the Oldest Math Text Hinted at Hidden Universes
(dramatic music) - [Derek] A single sentence in one of the oldest math books held the key to understanding our universe. Euclid’s “Elements” has been published in more editions than any other book except the Bible. It was the go-to math text for over 2,00…
A String of Shark Attacks in San Diego | When Sharks Attack
[Music] It’s just a really tight-knit ocean loving community. Uh, everybody generally has the same sort of healthy ocean lifestyle vibe. It’s what makes this area so unique. Scott Bass has called San Diego home for over 40 years. “I love living here; you…