yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Strong acid solutions | Acids and bases | AP Chemistry | Khan Academy


4m read
·Nov 10, 2024

A strong acid is an acid that ionizes 100% in solution. For example, hydrochloric acid (HCl) as a strong acid donates a proton to water (H2O) to form the hydronium ion (H3O+) and the conjugate base to HCl, which is the chloride ion (Cl−).

In reality, this reaction reaches an equilibrium; however, the equilibrium lies so far to the right and favors the product so much that we don't draw an equilibrium arrow. We simply draw an arrow going to the right, indicating the reaction essentially goes to completion. If the reaction essentially goes to completion, we can say that hydrochloric acid ionizes 100% and forms hydronium ions and chloride anions. So, essentially, there's no more HCl left; it's all turned into H3O+ and Cl−.

It's also acceptable to completely leave water out of the equation and to show hydrochloric acid (HCl) turning into H+ and Cl−. Once again, since HCl is a strong acid, there's only an arrow going to the right, indicating HCl ionizes 100%. And since there's only one water molecule difference between H+ and H3O+, H+ and H3O+ are used interchangeably.

Hydrochloric acid is an example of a monoprotic strong acid. Monoprotic means hydrochloric acid has one proton that it can donate in solution. Other examples of monoprotic strong acids include hydrobromic acid (HBr), hydroiodic acid (HI), nitric acid (HNO3), and perchloric acid (HClO4). Sulfuric acid is H2SO4, and it's a strong acid, but it's a diprotic acid, meaning it has two protons that it can donate. However, only the first ionization for sulfuric acid is strong.

Let's calculate the pH of a strong acid solution. In this case, we're going to look at a 0.4 mol solution of nitric acid. Nitric acid (HNO3) reacts with water to form hydronium (H3O+) and nitrate (NO3−), which is the conjugate base to HNO3. Because nitric acid is a strong acid, we assume the reaction goes to completion.

Therefore, if the initial concentration of nitric acid is 0.4 mol, looking at our mole ratio in the balanced equation, there's a one in front of nitric acid, and there's also a one in front of hydronium and a one in front of nitrate. Therefore, if the reaction goes to completion, the concentration of hydronium would also be 0.4 molar, and the same with the nitrate anion, that would also have a concentration of 0.4 mol.

Since our goal is to calculate the pH of this solution, we know that the equation for pH is pH = -log[H3O+]. Therefore, we just need to plug in the concentration of hydronium ions into our equation. This gives us pH = -log(0.4), which is equal to 1.40. So even though this is a pretty dilute solution of nitric acid, because nitric acid is a strong acid, the pH is pretty low.

Also note, since we have two significant figures for the concentration of hydronium ions, we need two decimal places for our final answer. Let's do another problem with a strong acid solution. Let's say we have 100 mL of an aqueous solution of hydroiodic acid, and the pH of the solution is equal to 1.50, and our goal is to find the mass of HI that's present in solution.

Hydroiodic acid reacts with water to form the hydronium ion and the iodide anion, and the mole ratio of HI to H3O+ is 1:1. So, if we can find the concentration of hydronium ion in solution, that should also be the initial concentration of hydroiodic acid. Once we find the initial concentration of hydroiodic acid, we can find the mass of HI that's present.

Since we're given the pH in the problem, we can plug that directly into our equation, which gives us 1.50 = -log[H3O+]. To solve for the concentration of hydronium ions, we can first move the negative sign to the left side, which gives us -1.50 = log[H3O+].

To get rid of the log, we can take 10 to both sides, so the concentration of hydronium ions is equal to 10^(-1.50), which is equal to 0.32. So, the concentration of hydronium ions is 0.32 molar, and because the mole ratio of hydronium ion to HI is 1:1, the initial concentration of HI is also 0.32 mol.

Now that we know the initial concentration of HI, we're ready to find the mass of HI present. Molarity is moles per liter, so let's go ahead and rewrite this as 0.32 moles per liter. The volume of the solution is 100 mL, which is equal to 0.10 L.

So, if we multiply moles per liter by the volume, which is 0.10 L, liters will cancel and give us moles. This is equal to 0.32 moles of HI. Since our goal is to find the mass of HI present, the final step is to multiply the moles of HI by the molar mass, which is 128 g per 1 mole of HI.

So, moles of HI would cancel out, and this gives us 41 grams as our final answer.

More Articles

View All
Exposing "Fake YouTube Gurus" and the business of Selling Courses
There are very few industries out there where you have the potential to make tens of millions of dollars with no employees, no overhead, no office, no physical products, and nothing but a computer, an internet connection, and something to teach. There are…
Will CORONAVIRUS Cause the Next RECESSION | Ask Mr. Wonderful #20 Kevin O'Leary and Mark Cuban
Okay, soft the studio. But before I go, I’m starting to really get into these enemy sunglasses. Yeah, this is Alpha M Steel. Two choices for today: diggin’ these, but also like these—not bad. Hmm, I look spectacular! I’m going with these today. Anyways, …
Most Important Financial Decisions You Will Make In Your Life (Ranked)
We are the outcome of our choices. One day, you’ll look back on your life, and you’ll realize it’s the decisions you’ve made up until now that made you rich or poor. So, here are the most important financial decisions you will make in your life. Welcome …
Atomic spectra | Physics | Khan Academy
We can look at stars or nebulas or even planets which are very, very far away and estimate what composes them, what are the elements that are there inside of them. But how do we do that? How can we sit here on Earth and figure out what elements are presen…
Visually dividing decimal by whole number
In this video, we’re going to try to figure out what 4 tenths divided by 5 is. So pause this video and see if you can think about it before we work through it together. We’re really going to think about approaching this visually. All right, now let’s wor…
Angular velocity and speed | Uniform circular motion and gravitation | AP Physics 1 | Khan Academy
What we’re going to do in this video is look at a tangible example where we calculate angular velocity. But then, we’re going to see if we can connect that to the notion of speed. So let’s start with this example, where once again we have some type of a …