yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Relating circumference and area


3m read
·Nov 11, 2024

So we have a circle here, and let's say that we know that its circumference is equal to 6 Pi. I'll write it units, whatever our units happen to be. Let's see if we can figure out, given that its circumference is 6 Pi of these units, what is the area going to be equal to? Pause this video and see if you can figure it out on your own.

First, think about if you could figure out the area for this particular circle. Then, let's see if we can come up with a formula for, given any circle circumference, can we figure out the area and vice versa.

All right, now let's work through this together, and the key here is to realize that from circumference, you can figure out the radius, and then from radius, you can figure out area. So we know that circumference, which is 6 Pi, is equal to 2 Pi times our radius.

So what is the radius going to be? The radius we're talking about, that distance, well, we can divide both sides by 2 Pi. So let's do that. If we divide both sides by 2 Pi to solve for R, what are we left with? Well, we have an R on the right-hand side; we have R is equal to Pi over Pi, that's just 1.

6 divided by 2 is 3, so we get that our radius right over here is equal to 3 units. Then we can use the fact that area is equal to Pi times R squared to figure out the area. This is going to be equal to Pi times 3 squared.

I don't think you have to write parentheses there: Pi times 3 squared, which is, of course, going to be equal to 9 Pi. So for this particular example, when the circumference is 6 Pi units, we're able to figure out that the area is actually going to be 9 Pi square units, or I could write units squared because we're squaring the radius. The radius is three units, so you square that, you get the units squared.

Now let's see if we can come up with a general formula. So we know that circumference is equal to 2 Pi R, and we know that area is equal to Pi R squared. Can we come up with an expression or a formula that relates directly between circumference and area?

I'll give you a hint: solve for R right over here and substitute back into this equation, or vice versa. Pause the video; see if you can do that.

All right, so let's do it over here. Let's solve for R. If we divide both sides by 2 Pi, that’s another color. So if we divide both sides by 2 Pi, and this is exactly what we did up here, what are we left with? We're left with, on the right-hand side, R is equal to C, the circumference, divided by 2 Pi. The radius is equal to the circumference over 2 Pi.

When we're figuring out the area, remember, area is equal to Pi times our radius squared. But we know that our radius could be written as circumference divided by 2 Pi. So instead of radius, I'll write circumference over 2 Pi.

Remember, we want to relate area and circumference. So what is this going to be equal to? We get area is equal to Pi times circumference squared over (2 Pi)^2, which is 4 Pi^2.

Let's see, we have a Pi, or we would have, if we multiply this out, we’d have a Pi in the numerator and two Pis in the denominator being multiplied. So Pi over Pi squared is just 1 over Pi.

And so there you have it: area is equal to circumference squared divided by 4 Pi. Let me write that down. So this is neat; you don't tend to learn this formula, but it's cool that we were able to derive it.

Area is equal to circumference squared over 4 Pi. And we can go the other way around. Given an area, how do we figure out circumference? You could just put the numbers in here, or you could just solve for C.

Let's multiply both sides by 4 Pi. Let's multiply both sides by 4 Pi, and if we do that, what do we get? We would get 4 Pi times the area is equal to our circumference squared.

Then, to solve for the circumference, we just take the square root of both sides. So you would get the square root of 4 Pi times the area is equal to our circumference.

You could simplify this a little bit if you wanted; you could take the four out of the radical. But this is pretty neat how you can relate circumference and area.

More Articles

View All
AMA with YC: Job Searching During an Economic Downturn (Event Summary)
[Music] Hey everyone, I’m Paige from Y Combinator, where I help people get jobs at YC startups through Work at a Startup. We hosted an event last week focused on job searching during an economic downturn, and especially considerations when looking at sta…
Safari Live - Day 329 | National Geographic
This program features live coverage of an African safari and may include animal kills and caucuses. Viewer discretion is advised. Jumbo jumbo! A very warm welcome to our sunset drive from the Mara Triangle. My name is David and in little cameras, Boom Bo…
Peter Lynch: The 5 Secrets to Outperforming the Market
So if you’ve been following this channel for any period of time, you know I’m a big fan of Warren Buffett. Just look at all of the videos I’ve made on him and his investing principles. However, what might come as a big surprise to you is that it actually …
Worked example: Maclaurin polynomial | Series | AP Calculus BC | Khan Academy
We’re told that ( f(x) ) is equal to one over the square root of ( x + 1 ), and what we want to figure out is what is the second degree Maclaurin polynomial of ( f ). And like always, pause this video and see if you could have a go at it. So, let’s remin…
AP US history multiple choice example 1 | US History | Khan Academy
So this video is about the multiple choice section on the APUSH History exam. And now I know you’re thinking, “Whoa, Cam, this is a multiple choice section; how much help could we possibly need with this? Either you know the answer or you don’t.” Contrim…
Exclusive: Building the Face of a Newly Found Ancestor | National Geographic
We’ve all seen crime investigation shows where they find a skull in the woods, and they take it to a forensic artist who builds the soft tissue of the face back on, and it becomes a recognizable entity. The crime is sometimes solved, but how do you do tha…