yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Relating circumference and area


3m read
·Nov 11, 2024

So we have a circle here, and let's say that we know that its circumference is equal to 6 Pi. I'll write it units, whatever our units happen to be. Let's see if we can figure out, given that its circumference is 6 Pi of these units, what is the area going to be equal to? Pause this video and see if you can figure it out on your own.

First, think about if you could figure out the area for this particular circle. Then, let's see if we can come up with a formula for, given any circle circumference, can we figure out the area and vice versa.

All right, now let's work through this together, and the key here is to realize that from circumference, you can figure out the radius, and then from radius, you can figure out area. So we know that circumference, which is 6 Pi, is equal to 2 Pi times our radius.

So what is the radius going to be? The radius we're talking about, that distance, well, we can divide both sides by 2 Pi. So let's do that. If we divide both sides by 2 Pi to solve for R, what are we left with? Well, we have an R on the right-hand side; we have R is equal to Pi over Pi, that's just 1.

6 divided by 2 is 3, so we get that our radius right over here is equal to 3 units. Then we can use the fact that area is equal to Pi times R squared to figure out the area. This is going to be equal to Pi times 3 squared.

I don't think you have to write parentheses there: Pi times 3 squared, which is, of course, going to be equal to 9 Pi. So for this particular example, when the circumference is 6 Pi units, we're able to figure out that the area is actually going to be 9 Pi square units, or I could write units squared because we're squaring the radius. The radius is three units, so you square that, you get the units squared.

Now let's see if we can come up with a general formula. So we know that circumference is equal to 2 Pi R, and we know that area is equal to Pi R squared. Can we come up with an expression or a formula that relates directly between circumference and area?

I'll give you a hint: solve for R right over here and substitute back into this equation, or vice versa. Pause the video; see if you can do that.

All right, so let's do it over here. Let's solve for R. If we divide both sides by 2 Pi, that’s another color. So if we divide both sides by 2 Pi, and this is exactly what we did up here, what are we left with? We're left with, on the right-hand side, R is equal to C, the circumference, divided by 2 Pi. The radius is equal to the circumference over 2 Pi.

When we're figuring out the area, remember, area is equal to Pi times our radius squared. But we know that our radius could be written as circumference divided by 2 Pi. So instead of radius, I'll write circumference over 2 Pi.

Remember, we want to relate area and circumference. So what is this going to be equal to? We get area is equal to Pi times circumference squared over (2 Pi)^2, which is 4 Pi^2.

Let's see, we have a Pi, or we would have, if we multiply this out, we’d have a Pi in the numerator and two Pis in the denominator being multiplied. So Pi over Pi squared is just 1 over Pi.

And so there you have it: area is equal to circumference squared divided by 4 Pi. Let me write that down. So this is neat; you don't tend to learn this formula, but it's cool that we were able to derive it.

Area is equal to circumference squared over 4 Pi. And we can go the other way around. Given an area, how do we figure out circumference? You could just put the numbers in here, or you could just solve for C.

Let's multiply both sides by 4 Pi. Let's multiply both sides by 4 Pi, and if we do that, what do we get? We would get 4 Pi times the area is equal to our circumference squared.

Then, to solve for the circumference, we just take the square root of both sides. So you would get the square root of 4 Pi times the area is equal to our circumference.

You could simplify this a little bit if you wanted; you could take the four out of the radical. But this is pretty neat how you can relate circumference and area.

More Articles

View All
The Rarest & Most Expensive Watches On Earth - Patek, F.P. Journe, Audemars Piguet, & MORE
[Music] Well, well, well, everybody, Mr. Wonderful here in a very special magical place. If you’re talking watches, with two great watch friends—first of all, Paul Boutros, the legendary auctioneer for very high-end watches. The Phillips auction is legend…
Calculating atomic weight | Chemistry | Khan Academy
We have listed here. We know that carbon-12 is the most common isotope of carbon on Earth. 98.89% of the carbon on Earth is carbon-12, and we know that by definition its mass is exactly 12 atomic mass units. Now, that’s not the only isotope of carbon on …
My Thoughts On The 2021 Stock Market Crash
What’s up you guys, it’s Graham here. So first of all, can you believe it? We only got about 40 days left so far in 2020, depending on when I post this. Which means I could finally start using 2021 in the titles of my videos! No, but in all seriousness, …
Eutrophication and dead zones | Ecology | Khan Academy
We’re now going to talk about something called UT tropication. UT tropication comes from, or it’s derived from, the Greek for well-nourished, referring to “well,” and then “trophic” or “trophia,” referring to nourished or nourishment. You might think that…
Elon Musk & The Midwit Meme – Dalton Caldwell and Michael Seibel
This is the the beauty of the midwife meme: the genius and the idiot come to the same conclusion. So what is the idiot approach? Like, that’s actually how you can divine the genius approach. You’re like, “What would an idiot do?” Everyone can reach for th…
Expansion of presidential power | American civics | US government and civics | Khan Academy
So I’m here with Jeffrey Rosen, the head of the National Constitution Center in Philadelphia, and what I want to talk about in this video, Jeffrey, is how has the powers of the president changed over time since the ratification of the Constitution? Well,…