yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Why the Parker Solar Probe is NASA's most exciting mission | Michelle Thaller | Big Think


3m read
·Nov 3, 2024

Processing might take a few minutes. Refresh later.

One of the most exciting things that's going on at NASA right now is that we have a probe that's actually orbiting very close to the sun. And over the next years, it's going to get closer, and closer, and closer. It's called the Parker Solar Probe, and the catch phrase, sort of the mission motto, is "a mission to touch the sun."

And that sounds incredibly dramatic. I should probably quantify that a bit. We're not actually touching the surface of the sun, but the sun has an atmosphere of gas around it, almost like the Earth has an atmosphere. It's called the corona. And the corona extends many millions of miles away from the surface of the sun. Parker Solar Probe is actually going to fly through the corona, getting into a fairly close part.

Now, it doesn't sound so close. It's going to get within about four million miles away from the sun. But the sun itself is nearly a million miles across. It's about 900,000 miles across. So this is actually getting just about four times the diameter of the sun away, which is really pretty close. It's by far the closest object that humanity has ever sent to the sun. Over the next seven years, it's going to orbit around 24 times.

And each time, it's going to get a little bit closer to the sun. And in order to survive that, in order to have enough speed to actually escape the sun's gravity and come out again, it's going to go faster and faster all the time as well. So at its fastest—in a few years from now—the Parker Solar Probe will be going nearly 400,000 miles an hour as it loops around the sun and then comes right back out again.

That's by far the fastest speed that any human-made spacecraft has ever attained. And that's going to be very exciting. So each perihelion is a little closer and a little faster, and then the orbit takes it out close to the planet Venus. And the planet Venus actually—interestingly enough—it helps Parker lose energy.

In order to get closer and closer to the sun, Parker has to lose some of its own rotational energy. And when it loses energy, it can drop in a little closer all the time. So over the next years, you're going to see our spacecraft get a little closer each time and go a little faster each time it goes around the sun.

Now, what are we looking for? Why are we actually flying a spacecraft this close to the sun? Well, the corona, the atmosphere around the sun, is actually one of the biggest mysteries in our solar system. It's extremely hot. The gas around the sun is millions of degrees. And that's rather strange because the surface of the sun itself is only about 10,000 degrees.

So how can the gas above the surface be that much hotter than the surface itself? Kind of the analogy we use at NASA is picture yourself around a campfire at night, and you're enjoying the warmth of the campfire, but then as you walk away from the fire, it becomes hotter and hotter as you go away and burns you to a crisp five miles out. That doesn't work. It's a very strange way of thinking about temperature.

So something's going on with the corona. It may have to do with the sun's complex magnetic field. Maybe the magnetic field is shooting particles up into it. It may have to do with shock waves, even the sun vibrating and actually giving energy to the gas above it. There's many different ideas and theories as to why the corona is so hot.

But right now, we don't have a great way to tell which is right and which isn't. So when we're there and actually measuring how fast the particles are going, the different particles you find, how dense or how rarified that gas is around the sun, we'll have a much better idea which of those theories are true.

The Parker Solar Probe to me is also a marvel of modern engineering. I mean, think about how are you going to get a spacecraft that close to the sun and have it survive and not burn up. Well, the whole spaceship is protected by a heat shield. The heat shield itself is not very thick. It's actually only about six inches thick.

And it's made of a carbon composite material with a very shiny reflective aluminum coating on top.

More Articles

View All
How Will The Federal Reserve Stop Inflation?
[Music] At the most recent meeting of the Federal Reserve Open Market Committee, it was forecast that inflation is due to rise, and they signaled that as a result, rate increases might move forward sooner than they expected. Now, I explained all this in a…
Interval of convergence for derivative and integral | Series | AP Calculus BC | Khan Academy
Times in our dealings with power series, we might want to take the derivative or we might want to integrate them. In general, we can do this term by term. What do I mean by that? Well, that means that the derivative of f prime of x is just going to be the…
What Shutting Down Your Startup Feels Like - Avni Patel Thompson of Poppy with Kat Manalac
Cat, you haven’t been on the podcast in a while. Why don’t you introduce yourself before we talk about Omni for an hour? Well, so I’m Captain Alec. I’m one of the partners at YC. I work a lot on outreach to applicants, so everything we do with an externa…
Dord.
Hey, Vsauce. Michael here. In 1934, Webster’s dictionary gave birth to a new word by mistake. Their chemistry editor, Austin N. Paterson, submitted a simple entry: “D or D abbreviation for density.” Nothing wrong with that, but the entry was misread, and …
URGENT: Federal Reserve Cancels Recession, Prices Fall, Massive Pivot Ahead
What’s up you guys, it’s Graham here, and you absolutely have to pay attention to what just happened. As of a few hours ago, the Federal Reserve has decided to once again pause any rate cuts for the foreseeable future. Except this time, investors are pric…
15 Differences Between Powerful and Powerless People
Some people command while others just complain. Some move the world while others get tossed around in the process. Welcome to Alux! The difference between powerful and powerless people often starts with their vision. Powerful people see beyond the horizon…