yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Writing a quadratic when given the vertex and another point | Algebra 1 (TX TEKS) | Khan Academy


3m read
·Nov 10, 2024

We're told a quadratic function f has a vertex at (-4, 7) and passes through the point (-2, -5). Write an equation for f in vertex form. So pause this video and try to work that out before we do that together.

All right, so first let's think about the general form of vertex form. If you have a quadratic function f, it's a function of x. So first, you're going to have some number times (x - h)^2 plus k. We'll talk in a little second what h and k are, but just to remind you why this right over here is actually a quadratic or a parabola, as you might recognize. You might say, "Okay, if I had something like this: f(x) = x^2," that makes sense—that that's going to have a shape something like that.

Now, you could also multiply that times a constant. So you could also imagine something like f(x) = a*x^2. If a is positive, you're still going to be upward opening. If a is negative, you would be downward opening like that. If a is greater than one, it would accelerate how fast as you go further and further from zero, how much that function increases. If it's between zero and one, it would kind of spread it out a little bit.

And then the rest of it is, well, imagine if you wanted to shift it to the right by h units. Well, then you would see something like this. If you wanted to shift it to the right by h units, you would have f(x) = a * (x - h)^2. That's just shifting a function. And then if you wanted to shift it up by k units, you would do + k. And that's exactly what we have right over here in this general form of a quadratic or quadratic in vertex form, I should actually say.

So the vertex is actually (h, k). This right over here, -4 is h and 7 is k. It's really telling you, if you didn't have h and k were zero, your vertex would be at zero. You would have just a traditional parabola, right, with the vertex at (0, 0). But we're shifting it in this form so that our vertex is at (-4, 7). So we can just substitute those in for h and k to start building out our the equation for f.

So, f(x) is going to be equal to a * (x - h), which is 4, we have to be very careful when we're subtracting negatives. So it's (-4) there squared plus k. k is 7.

Now, the next thing we can do—and why don't we just, well, the next thing we can do is simplify this a little bit. That uncertainty you heard in my voice was, well do I simplify this subtracting a negative and just making it adding four? I'll do that in the next step.

So the next thing I want to do is say, "Well, what is f(-2)?" Well, we know that f(-2) is -5, and we can use that to solve for a. So let me write this here. We could say f(-2), which we know is equal to -5, is equal to -5, but it's also going to be equal to all of this where I replace x with -2. So it's going to be equal to a times. So if I replace x with -2, it is actually—let me do it with—let me use that same color. -2 right over there, and then we have this subtracting a 4, so that's just adding a four squared, and then we have + 7.

And so now we just have to solve this part here. So we get -5 is equal to. What is -2 + 4? Well, that's just going to be 2.

2^2 is 4. So this all simplifies—let me make it clear—all this part right over here simplifies to 4a.

So we get: -5 = 4a + 7. We can just subtract seven from both sides and we get -12 = 4a. Divide both sides by four—oops!—divide both sides by four to solve for a, and we get a = -3.

So we’re actually done, but we want to write the whole equation out. We know what a is and we know what h and k are. So let's just write it out. The equation is f(x) = a, which we now know is -3, multiplied by (x + 4)^2 + 7.

And we are done.

More Articles

View All
Vatican City Explained
Vatican City: capitol of the Catholic Church, home to the pope, owner of impressive collections of art and history all contained within the borders of the world’s smallest country: conveniently circumnavigateable on foot in only 40 minutes. Just how did t…
How I Won The CNBC Stock Pickers Award 2
There’s a misinformed market about this, and I’d have to disclose, you know, I run on building indexes with FTSE Russell. I’m gonna disclose something today: I won the CNBC Stocktaking Contest yesterday. We’ve got that picture of that thing here somewhere…
Enthalpy and phase changes | Thermodynamics | AP Chemistry | Khan Academy
[Instructor] Let’s say that we have some solid water or ice, and we want to melt the ice and turn the solid water into liquid water. This phase change of solid water to liquid water is called melting, and it takes positive 6.01 kilojoules per one mole to …
HONEST TRUTH About Creating A SUCCESSFUL BUSINESS & Why MOST FAIL! | Kevin O'Leary
People bs themselves. They say to themselves, “I’m going to game the system; I’m going to tell everybody that if they buy a pair of socks from me, I’ll give a pair to charity; I’ll get lots of free press. The buyers at Walmart will want to see me because …
Making Pickled Eggs | Live Free or Die: How to Homestead
[Music] I’m just coming down to the coop this morning and seeing if we have some fresh eggs. There’s a bunch of different nests. We’ve got some whites and some browns and all sorts of different colors. Our chickens are laying more eggs than we can eat rig…
Growth Mindset: Khan Academy's Director of U.S. Content on academic belonging
My name is Brian John Jude and I manage the arts, humanities, and social science curriculum here at Khan Academy. I was the first person in my family to attend college, and I remember my freshman year. The first course I was taking was in literature and …