yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Reasoning with systems of equations | Equivalent systems of equations | Algebra I | Khan Academy


4m read
·Nov 10, 2024

So let's say I had the equation (2x + y = 8). This is a single equation with two unknowns, and there are many different (xy) pairs that would satisfy this equation. Now let's add a second equation: (x + y = 5). Once again, if we only looked at this second equation, there are many different (xy) pairs that would satisfy it. You could have (x = 4), (y = 1); (x = 3), (y = 2); many, many, actually there's an infinite number that would satisfy this right over here.

But what's interesting about a system of equations is you're using both of these equations as constraints. You're saying, is there at least one (xy) pair that would satisfy both of these equations? And as we'll see in many future videos, this is a very useful thing to think about in many, not only fields of mathematics but in many fields of knowledge generally.

But the focus of this video is to think about why the operations we can perform on either or both of these equations, why they are valid and why they're intuitive. So the first series of operations is when we just try to manipulate one equation by themselves. For example, we could multiply both sides of this purple equation, this top equation, by negative one. You would get (-2x - y = -8).

Now all I did right over here, this is you could do this even if we weren't thinking about a system, is (2x + y) is truly equal to (8). We're assuming that that is true because they're telling us that's true. So if (2x + y) is equivalent to (8), then the negative of (2x + y) should be equivalent to (-8). Or another way to think about it: if both of these sides are equal, if I multiply the left side by something, in order for the equality to hold true, I have to multiply the right side by the same thing.

So this equation on the right, this purple equation, is an equivalent equation to our original one. It looks different, but the same (xy) pairs that satisfy this right equation are going to satisfy this left equation and vice versa.

Now another operation that sometimes feels a little bit less intuitive when you first learn it, when you're solving systems, is when you add two equations together. So for example, we have that purple equation, the one that we've now multiplied by negative one, and now we have our original, I guess that's teal or blue equation, so (x + y = 5).

And we learn when we're solving systems of equations that we can get a new equation by adding the two left sides and adding the two right sides. So you might have seen something like this. When we add the two left sides, let's see, (-2x + x) would be (-x), and then (-y + y), well, that's just going to cancel out, so we have no (y)'s left. And then that's going to be equal to (-8 + 5), which is equal to (-3).

And before I even go on to try to solve this, why were we able to do that? Pause this video and think about that. Well, let me give you an example. If we had started with (-2x - y = -8) just as a single equation, and if I added (5) to both sides of that, so if I added (5) on the left-hand side and I added (5) on the right-hand side, I think that would have made intuitive sense to you.

(-2x - y + 5 = -8 + 5). Hopefully, this is a little bit intuitive because, once again, and I'm really saying the same thing over and over again, the left side is truly equal to (-8). So if I add (5) to it, it's still going to be truly equal to (-8 + 5).

So hopefully this makes a little bit of intuitive sense. The key realization with what we did up here is we essentially added (5) to both sides. You might say, well no, we only added (5) to the right-hand side, but remember (x + y) we are saying is equal to (5). It’s just like adding the same thing to both sides of the equation.

And then when you do that, that's where we essentially were able to eliminate this (y) variable, and now we got one equation with one unknown. From there, you can just do a valid algebraic operation. You could say, "Okay, I just want (x) over here." What if I were to divide both sides by (-1)?

Once again, because (-x = -3), if I divide (-1), if I divide (-x) by (-1), I also have to divide (-3) by (-1) in order to maintain the equality. So then you're going to get (x = 3).

And so that would be the (x) value of that (xy) pair that satisfies both. And then to figure out the (y) value, you would say, "Alright, if (x = 3), I should be able to go back into either of these equations to find the corresponding (y) value."

And it's a little bit easier to go into that second one. You could say, "Alright, 3 + y = 5." (3 + y) must be equal to (5), and then of course, if you subtract (3) from both sides, because once again we're saying (3 + y) is literally equal to (5), then you're going to get (y = 2).

And so we found an (xy) pair that satisfies both equations. Really, everything that we wrote down over here, these are all equivalent statements. One of them is going to be true if and only if the other statements, the other equations are also true.

So (2x + y = 8) and (x + y = 5) if and only if (x = 3) and (y = 2) if and only if (-2x - y = -8) if and only if (-x = -3).

More Articles

View All
Enter the Fish Hawk | Wicked Tuna
First day of the season. We’re heading out now, trying to get on some fish. I’m Brad Keselowski, captain of the Fishhawk. Fishing has always been a lot more than a job for me. I always had solace to be able to leave land and just fish to provide for my fa…
The True Cost Of "Success"
What’s up you guys? It’s Graham here. So chances are, if you’re watching this video right now, I have a feeling you’re probably more ambitious than most. You probably set pretty high standards for yourself, and you’re willing to do whatever it takes to ge…
How to Analyze an Annual Report (10-K) Like a Hedge Fund Analyst
Legendary investor Warren Buffett has said in countless interviews that being able to analyze a company’s annual report is foundational for successful investing. In this video, we are going to go over how to analyze a company’s annual report, also referre…
What was the Articles of Confederation? | US Government and Civics | Khan Academy
So John, people are always talking about the Constitution, but the Constitution was not the first founding document of the United States. What were the Articles of Confederation, and why did they need to get replaced? Well, the Articles of Confederation w…
Interpreting bar graphs (colors) | Math | 3rd grade | Khan Academy
Chelsey asks 600 people at her school their favorite color and graphs the results. Some colors are not on Chelsea’s graph. How many people chose colors other than those on Chelsea’s graph? So, here’s Chelsea’s graph: she made a bar graph and she listed s…
AI Can Literally Lend You a Hand #kurzgesagt #shorts
AI can literally lend you a hand, but hands are complicated. If your hand were a video game character, you’d need 27 buttons to control it. Millions of possible button combinations need to be translated to a robotic hand in real time, with as little delay…