yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: limit comparison test | Series | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

So we're given a series here and they say what series should we use in the limit comparison test. Let me underline that: the limit comparison test in order to determine whether ( S ) converges.

So let's just remind ourselves about the limit comparison test. If we say, if we say that we have two series, and I'll just use this notation ( a_n ) and then another series ( b_n ), and we know that ( a_n ) and ( b_n ) are greater than or equal to zero for all ( n ). If we know this, then if the limit as ( n ) approaches infinity of ( \frac{a_n}{b_n} ) is equal to some positive constant (so ( 0 < c < \infty )), then either both converge or both diverge.

It really makes a lot of sense because it's saying, look, as we get into our really large values of ( n ), as we go really far out there in terms of the terms, if our behavior starts to look the same, then it makes sense that both these series would converge or diverge. We have an introductory video on this in another video.

So let's think about, what if we say that this is our ( a_n )? If we say that this is ( a_n ) right over here, what is a series that we can really compare to that seems to have the same behavior as ( n ) gets really large? Well, this one seems to get unbounded. This one doesn't look that similar; it has a ( 3^{n-1} ) in the denominator, but the numerator doesn't behave the same.

This one over here is interesting because we could write this. This is the same thing as ( \sum_{n=1}^{\infty} ) we could write this as ( \frac{2^n}{3^n} ), and these are very similar. The only difference between this and this is that in the denominator here (or in the denominator up here) we have a minus one, and down here, we don't have that minus one. So it makes sense, given that that's just a constant, that as ( n ) gets very large, these might behave the same.

So let's try it out. Let's find the limit. We also know that the ( a_n ) and ( b_n )--if we say that this right over here is ( b_n ), if we say that's ( b_n ), that this is going to be positive or this is going to be greater than or equal to zero for ( n = 1, 2, 3 ). So for any values, this is going to be greater than or equal to zero, and the same thing right over here; it's going to be greater than or equal to zero for all the ( n ) that we care about.

So we meet these first constraints, and so let's find the limit as ( n ) approaches infinity of ( a_n ), which is written in that red color: ( \frac{2^n}{3^{n-1}} ) over ( b_n ) over ( \frac{2^n}{3^n} ).

So let me actually do a little algebraic manipulation right over here. This is going to be the same thing as ( \frac{2^n}{3^{n-1}} \cdot \frac{3^n}{2^n} ). Divide the numerator and denominators by ( 2^n ); those cancel out. So this will give us ( \frac{3^n}{3^{n-1}} ).

Like we can divide the numerator and denominator by ( 3^n ), and that will give us ( \frac{1}{1 - \frac{1}{3^n}} ). So we could say this is the same thing as the limit as ( n ) approaches infinity of ( \frac{1}{1 - \frac{1}{3^n}} ).

Well, what's this going to be equal to? Well, as ( n ) approaches infinity, this thing ( \frac{1}{3^n} ) is going to go to zero. So this whole thing is just going to approach one. One is clearly between zero and infinity, so the destinies of these two series are tied. They either both converge or they both diverge, and so this is a good one to use the limit comparison test with.

And so let's think about it. Do they either both converge or do they both diverge? Well, this is a geometric series; our common ratio here is less than one, so this is going to converge. This is going to converge, and because this one converges, by the limit comparison test, our original series ( S ) converges.

And we are done.

More Articles

View All
The 5 Major Forces Coming Together to Make 2024 a Pivotal Year
I think there are five major forces that repeated through history, and those are the debt money economic force, the internal conflict force, which is the big, uh, conflict in terms of the elections and so on, the external geopolitical force, which is the …
How to buy a $25,000,000 private jet!
Hey Steve, I have 25 million dollars and I want a jet from London to Dubai. No problem, we got a few we can choose from. Let’s take a look on the video. Let’s do it! 125 million dollars! How many passengers do you want to carry? It’s only me, I don’t h…
Thoughtful Disagreement is the Key to an Innovative and Harmonious Society
The art of thoughtful disagreement is the basis of a very, uh, innovative and also harmonious society. If you want to have an innovative, harmonious society, you have to have the art of thoughtful disagreement. The mediator is a very, uh, important role t…
What I’ve learnt after selling private jets to billionaires for 40 years
If I was 21 again, what would I do differently? Wow, and a lot of times people ask, if you started from zero today, you know, what would you do first? It’s so tough out there in the world. We calculated 1,500 millionaires that travel past the window every…
How Rescue Dogs Are Helping Veterans With PTSD | National Geographic
My Dog Freedom is… I can’t say he’s a pet because that’s just… it’s not enough. Freedom not just changed my life; he did save my life. I was in a hard downward spiral, literally sitting in this chair, starving myself to death. I wouldn’t answer the phone,…
Functions defined by integrals: switched interval | AP Calculus AB | Khan Academy
The graph of f is shown below. Let G of X be equal to the definite integral from 0 to X of f of T DT. Now, at first when you see this, you’re like, “Wow, this is strange! I have a function that is being defined by an integral, a definite integral, but on…