yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: limit comparison test | Series | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

So we're given a series here and they say what series should we use in the limit comparison test. Let me underline that: the limit comparison test in order to determine whether ( S ) converges.

So let's just remind ourselves about the limit comparison test. If we say, if we say that we have two series, and I'll just use this notation ( a_n ) and then another series ( b_n ), and we know that ( a_n ) and ( b_n ) are greater than or equal to zero for all ( n ). If we know this, then if the limit as ( n ) approaches infinity of ( \frac{a_n}{b_n} ) is equal to some positive constant (so ( 0 < c < \infty )), then either both converge or both diverge.

It really makes a lot of sense because it's saying, look, as we get into our really large values of ( n ), as we go really far out there in terms of the terms, if our behavior starts to look the same, then it makes sense that both these series would converge or diverge. We have an introductory video on this in another video.

So let's think about, what if we say that this is our ( a_n )? If we say that this is ( a_n ) right over here, what is a series that we can really compare to that seems to have the same behavior as ( n ) gets really large? Well, this one seems to get unbounded. This one doesn't look that similar; it has a ( 3^{n-1} ) in the denominator, but the numerator doesn't behave the same.

This one over here is interesting because we could write this. This is the same thing as ( \sum_{n=1}^{\infty} ) we could write this as ( \frac{2^n}{3^n} ), and these are very similar. The only difference between this and this is that in the denominator here (or in the denominator up here) we have a minus one, and down here, we don't have that minus one. So it makes sense, given that that's just a constant, that as ( n ) gets very large, these might behave the same.

So let's try it out. Let's find the limit. We also know that the ( a_n ) and ( b_n )--if we say that this right over here is ( b_n ), if we say that's ( b_n ), that this is going to be positive or this is going to be greater than or equal to zero for ( n = 1, 2, 3 ). So for any values, this is going to be greater than or equal to zero, and the same thing right over here; it's going to be greater than or equal to zero for all the ( n ) that we care about.

So we meet these first constraints, and so let's find the limit as ( n ) approaches infinity of ( a_n ), which is written in that red color: ( \frac{2^n}{3^{n-1}} ) over ( b_n ) over ( \frac{2^n}{3^n} ).

So let me actually do a little algebraic manipulation right over here. This is going to be the same thing as ( \frac{2^n}{3^{n-1}} \cdot \frac{3^n}{2^n} ). Divide the numerator and denominators by ( 2^n ); those cancel out. So this will give us ( \frac{3^n}{3^{n-1}} ).

Like we can divide the numerator and denominator by ( 3^n ), and that will give us ( \frac{1}{1 - \frac{1}{3^n}} ). So we could say this is the same thing as the limit as ( n ) approaches infinity of ( \frac{1}{1 - \frac{1}{3^n}} ).

Well, what's this going to be equal to? Well, as ( n ) approaches infinity, this thing ( \frac{1}{3^n} ) is going to go to zero. So this whole thing is just going to approach one. One is clearly between zero and infinity, so the destinies of these two series are tied. They either both converge or they both diverge, and so this is a good one to use the limit comparison test with.

And so let's think about it. Do they either both converge or do they both diverge? Well, this is a geometric series; our common ratio here is less than one, so this is going to converge. This is going to converge, and because this one converges, by the limit comparison test, our original series ( S ) converges.

And we are done.

More Articles

View All
AP US history DBQ example 4 | The historian's toolkit | US History | Khan Academy
All right, this is the fourth and final in a series of videos about how to tackle the DBQ, or document-based question, on the AP US History exam. Now, we started out by reading all of the documents that are provided in the exam, from which we are to write…
THE END OF $0 REAL ESTATE | Major Changes Explained
What’s up, grandma’s guys? Here. So, a few days ago, I made a video discussing my thoughts on the new personal tax increases along with an analysis of how that would affect the stock market. However, I purposely left out one crucial point, which has the …
Breaking Bad: The Psychology of Walter White (based on Nietzsche)
“The higher man is distinguished from the lower by his fearlessness and his readiness to challenge misfortune.” Friedrich Nietzsche. Breaking Bad is considered one of the best television series ever made. It tells the story of Walter White, an unremarkab…
How I Developed the Principled Way of Thinking
What happened is I found that I needed to write down my criteria and test them. So I started with the markets because, you know, it’s tough to wrestle all in your head with everything. I found that I needed to do that, and I could test the criteria. I fo…
What skills you need to sell private jets.
Everybody asks what kind of skill sets they need to get into selling jets and how they can get into this business. First of all, you have to have passion for aviation. You have to really have it in your blood, as far as I’m concerned. Really, watching ai…
Michael Seibel - How to Plan an MVP
My name is Michael. Uh, I work here at Y Combinator. I helped run the accelerator. Uh, before that, I did two YC startups—one in 2007 and one in 2012. Today, I’m going to talk to you about a minimum viable product, so MVP. We always yell at founders to n…