yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Worked example: limit comparison test | Series | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

So we're given a series here and they say what series should we use in the limit comparison test. Let me underline that: the limit comparison test in order to determine whether ( S ) converges.

So let's just remind ourselves about the limit comparison test. If we say, if we say that we have two series, and I'll just use this notation ( a_n ) and then another series ( b_n ), and we know that ( a_n ) and ( b_n ) are greater than or equal to zero for all ( n ). If we know this, then if the limit as ( n ) approaches infinity of ( \frac{a_n}{b_n} ) is equal to some positive constant (so ( 0 < c < \infty )), then either both converge or both diverge.

It really makes a lot of sense because it's saying, look, as we get into our really large values of ( n ), as we go really far out there in terms of the terms, if our behavior starts to look the same, then it makes sense that both these series would converge or diverge. We have an introductory video on this in another video.

So let's think about, what if we say that this is our ( a_n )? If we say that this is ( a_n ) right over here, what is a series that we can really compare to that seems to have the same behavior as ( n ) gets really large? Well, this one seems to get unbounded. This one doesn't look that similar; it has a ( 3^{n-1} ) in the denominator, but the numerator doesn't behave the same.

This one over here is interesting because we could write this. This is the same thing as ( \sum_{n=1}^{\infty} ) we could write this as ( \frac{2^n}{3^n} ), and these are very similar. The only difference between this and this is that in the denominator here (or in the denominator up here) we have a minus one, and down here, we don't have that minus one. So it makes sense, given that that's just a constant, that as ( n ) gets very large, these might behave the same.

So let's try it out. Let's find the limit. We also know that the ( a_n ) and ( b_n )--if we say that this right over here is ( b_n ), if we say that's ( b_n ), that this is going to be positive or this is going to be greater than or equal to zero for ( n = 1, 2, 3 ). So for any values, this is going to be greater than or equal to zero, and the same thing right over here; it's going to be greater than or equal to zero for all the ( n ) that we care about.

So we meet these first constraints, and so let's find the limit as ( n ) approaches infinity of ( a_n ), which is written in that red color: ( \frac{2^n}{3^{n-1}} ) over ( b_n ) over ( \frac{2^n}{3^n} ).

So let me actually do a little algebraic manipulation right over here. This is going to be the same thing as ( \frac{2^n}{3^{n-1}} \cdot \frac{3^n}{2^n} ). Divide the numerator and denominators by ( 2^n ); those cancel out. So this will give us ( \frac{3^n}{3^{n-1}} ).

Like we can divide the numerator and denominator by ( 3^n ), and that will give us ( \frac{1}{1 - \frac{1}{3^n}} ). So we could say this is the same thing as the limit as ( n ) approaches infinity of ( \frac{1}{1 - \frac{1}{3^n}} ).

Well, what's this going to be equal to? Well, as ( n ) approaches infinity, this thing ( \frac{1}{3^n} ) is going to go to zero. So this whole thing is just going to approach one. One is clearly between zero and infinity, so the destinies of these two series are tied. They either both converge or they both diverge, and so this is a good one to use the limit comparison test with.

And so let's think about it. Do they either both converge or do they both diverge? Well, this is a geometric series; our common ratio here is less than one, so this is going to converge. This is going to converge, and because this one converges, by the limit comparison test, our original series ( S ) converges.

And we are done.

More Articles

View All
Meme Culture: How Memes Took Over The World
Ah, here we go again. On the 1st of September 1939, Germany invaded Poland from the east, starting World War II. As you would expect, there is fear and panic throughout Europe. So, to calm the British population down and to prevent widespread panic, the w…
Risking My Life To Settle A Physics Debate
This propeller craft was built to settle a physics debate because what its creators claim it can do is so counterintuitive that it seems to violate the law of conservation of energy. So I’ve come here to drive it myself and see if it really works. And is …
Taking a break from stocks
What’s up, Graham? It’s guys here. So, I think it’s really important that we talk about a concerning new trend that’s just started to surface in the stock market over the last few weeks. And listen, I get it. These last few months have been rather eventf…
Recognition | Vocabulary | Khan Academy
I see you, word Smiths, which is good because the word I’m talking about in this video is recognition. Recog, it’s a noun; it means the act of acknowledging, being aware of, or noticing something. Follow me over to the atmology Zone trademark where I’m g…
Fishing Bajau Style | Primal Survivor
So this gun is made out of pretty much all found materials. The spirit self made out of a piece of steel rod has a simple but effective barb here to keep a fish from wriggling off and escaping. The other end of the spear has these little grooves filed int…
Beer Bath !!! -- Best Images of the Week, IMG! #30
The great monitor arc and an iPad typewriter. It’s episode 30 of IMG. Here’s the world’s largest Lego tower, and here’s an egg fried into a duck face. You know you’re patriotic when you resort to kittens, although I prefer driving a horse in my car. Oh ye…