yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Refraction and frequency | Waves | Middle school physics | Khan Academy


2m read
·Nov 10, 2024

When light is going through a uniform medium like the air, or as we know, light can go through vacuum, so nothing at all, we imagine it going in a straight line. But we see something really interesting happening here when it hits this glass prism. I know it just looks like a gray triangle to you, but imagine it as a triangular piece of glass, and it's hitting it at an angle.

What this animation shows us is that the path of the light actually gets bent. Not only does it get bent, but the different frequencies of the light get bent by different amounts. Now, if you were to look at this with your eyes, you wouldn't be able to see the actual waves like we're seeing in this diagram right over here. You would just see how your brain, or how your mind, perceives the various frequencies.

That's why they made the higher frequencies here more like a violet or a purple color, and that's why they made the lower frequencies here more of a red color, because that's how your brain, or your mind, would perceive them. But you can see as this light goes from, let's say, the vacuum to this prism to this crystal or this glass, the high frequency light gets bent more. The low frequency light, which still gets bent, gets bent less, and then that essentially spreads out all the wavelengths.

When we have white light, it has all of the visible wavelengths in it. But when it hits a prism like this, if you imagine a triangular piece of glass or crystal and it hits it at an angle, well then the different wavelengths spread out. If you were to put a piece of paper here, you would see a rainbow, and that's actually how rainbows are formed.

A bunch of water particles in the air refract light exactly like this. This process of when light goes from one transparent medium to another, or a vacuum to some other medium that it can travel through that's transparent, if it hits it at an angle, it can get bent, which is what we call refraction. This is why when you look at a cup of water or at a pool at an angle, you're not seeing directly through the pool; the image gets distorted.

More Articles

View All
Generating inputs and outputs of a function
So we’re asked to pick any three pairs of corresponding input and output values of the following function and fill the table accordingly, and if necessary, round our answers to the nearest 0.1. Our function is defined as: if I input a t, what I’m going t…
Free Markets Provide the Best Feedback
Mark Andreessen summarizes this nicely as “strong opinions loosely held.” So, as a society, if you’re truth-seeking, you want to have strong opinions but very loosely held. You want to try them, see if they work, and then error-correct if they don’t. But…
Pilgrims and Martian Explorers | StarTalk
A common analogy that people like to make is that if you are the first colony on Mars, that’s kind of like the pilgrims coming from Europe to the New World. You know, you’re not going back. So you’ve got your loved ones, your possessions, a competent ship…
Never Ending Problems (Solution for Life)
We recently went through a series of unfortunate events that got us extremely annoyed. By the way, when we say “us,” we usually mean some of us from the team or all of us. In this case, it was some of us. But the point is, none of these events, taken indi…
Directional derivative, formal definition
So I have written here the formal definition for the partial derivative of a two-variable function with respect to X. What I want to do is build up to the formal definition of the directional derivative of that same function in the direction of some vecto…
How To Sell A $13,000,000 Private Jet
Uh, you know what sort of asking price you guys are looking for it? I think on that aircraft, um, is somewhere around 13, uh, 13, 13 and a half, something like that. I’ll have to get the number exactly from James because he’s talking with the owner much m…