yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Refraction and frequency | Waves | Middle school physics | Khan Academy


2m read
·Nov 10, 2024

When light is going through a uniform medium like the air, or as we know, light can go through vacuum, so nothing at all, we imagine it going in a straight line. But we see something really interesting happening here when it hits this glass prism. I know it just looks like a gray triangle to you, but imagine it as a triangular piece of glass, and it's hitting it at an angle.

What this animation shows us is that the path of the light actually gets bent. Not only does it get bent, but the different frequencies of the light get bent by different amounts. Now, if you were to look at this with your eyes, you wouldn't be able to see the actual waves like we're seeing in this diagram right over here. You would just see how your brain, or how your mind, perceives the various frequencies.

That's why they made the higher frequencies here more like a violet or a purple color, and that's why they made the lower frequencies here more of a red color, because that's how your brain, or your mind, would perceive them. But you can see as this light goes from, let's say, the vacuum to this prism to this crystal or this glass, the high frequency light gets bent more. The low frequency light, which still gets bent, gets bent less, and then that essentially spreads out all the wavelengths.

When we have white light, it has all of the visible wavelengths in it. But when it hits a prism like this, if you imagine a triangular piece of glass or crystal and it hits it at an angle, well then the different wavelengths spread out. If you were to put a piece of paper here, you would see a rainbow, and that's actually how rainbows are formed.

A bunch of water particles in the air refract light exactly like this. This process of when light goes from one transparent medium to another, or a vacuum to some other medium that it can travel through that's transparent, if it hits it at an angle, it can get bent, which is what we call refraction. This is why when you look at a cup of water or at a pool at an angle, you're not seeing directly through the pool; the image gets distorted.

More Articles

View All
Watch: Fireflies Glowing in Sync to Attract Mates | National Geographic
[Music] The synchronous Firefly ranges throughout the southern Appalachian. It really is a pretty magical thing to see. I think people are just fascinated by fireflies, you know, especially growing up. A lot of people have experiences of catching fireflie…
Covalent bonds | Molecular and ionic compound structure and properties | AP Chemistry | Khan Academy
In a previous video, we introduced ourselves to the idea of bonds and the idea of ionic bonds, where one atom essentially is able to take electrons from another atom. But then, because one becomes positively charged and the other becomes negatively charge…
Steve Jobs Was the "Toughest Bastard" I Ever Met | Kevin O'Leary
Welcome back to segment 3 with Kevin Oli. All right, two words: Steve Jobs. Um, the toughest bastard you’ve ever met. He is tough. He was, you know, I went to his, uh, I called him up. Um, I said to him, “Listen, Steve, you have 2 and a half% of the marke…
What Do Alien Civilizations Look Like? The Kardashev Scale
An observable universe is a big place that’s been around for more than 13 billion years. Up to two trillion galaxies made up of something like 20,000 billion billion stars surround our home galaxy. In the Milky Way alone, scientists assume there are some …
Khanmigo is now available to the public (US only)| Personalized AI tutor & teaching assistant
Hi everyone, Sal Khan here, and I’m excited to announce that Khan Migo, our generative AI-powered tutor on Khan Academy, is now generally available! This is especially powerful as we go into back to school. If you have Khan Migo, your student has it on th…
2015 AP Biology free response 7
Smell perception in mammals involves the interactions of airborne odorant molecules from the environment with receptor proteins on the olfactory neurons in the nasal cavity. The binding of odorant molecules to the receptor proteins triggers action potenti…