yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Refraction and frequency | Waves | Middle school physics | Khan Academy


2m read
·Nov 10, 2024

When light is going through a uniform medium like the air, or as we know, light can go through vacuum, so nothing at all, we imagine it going in a straight line. But we see something really interesting happening here when it hits this glass prism. I know it just looks like a gray triangle to you, but imagine it as a triangular piece of glass, and it's hitting it at an angle.

What this animation shows us is that the path of the light actually gets bent. Not only does it get bent, but the different frequencies of the light get bent by different amounts. Now, if you were to look at this with your eyes, you wouldn't be able to see the actual waves like we're seeing in this diagram right over here. You would just see how your brain, or how your mind, perceives the various frequencies.

That's why they made the higher frequencies here more like a violet or a purple color, and that's why they made the lower frequencies here more of a red color, because that's how your brain, or your mind, would perceive them. But you can see as this light goes from, let's say, the vacuum to this prism to this crystal or this glass, the high frequency light gets bent more. The low frequency light, which still gets bent, gets bent less, and then that essentially spreads out all the wavelengths.

When we have white light, it has all of the visible wavelengths in it. But when it hits a prism like this, if you imagine a triangular piece of glass or crystal and it hits it at an angle, well then the different wavelengths spread out. If you were to put a piece of paper here, you would see a rainbow, and that's actually how rainbows are formed.

A bunch of water particles in the air refract light exactly like this. This process of when light goes from one transparent medium to another, or a vacuum to some other medium that it can travel through that's transparent, if it hits it at an angle, it can get bent, which is what we call refraction. This is why when you look at a cup of water or at a pool at an angle, you're not seeing directly through the pool; the image gets distorted.

More Articles

View All
Ending Your Inner Civil War (Carl Jung's Psychology)
What drives people to war with themselves is the suspicion or the knowledge that they consist of two persons in opposition to one another. The conflict may be between the sensual and the spiritual man, or between the ego and the shadow. Carl Jung, Swiss …
10 STOIC PRINCIPLES TO BUILD SELF DISCIPLINE | MARCUS AURELIUS | STOICISM INSIGHTS
Imagine waking up every day with a crystal clear sense of purpose, not swayed by setbacks, unfazed by the chaos around you, and relentlessly focused on what truly matters. It sounds almost superhuman, doesn’t it? Yet, this was the everyday reality for one…
Smoking is Awesome
The problem with smoking is that it’s kind of amazing – this is an irresponsible thing to say – but if we’re going to talk about it, we might as well do so honestly. Smoking creates a temporary problem and offers an instant solution. Once your brain is us…
Warren Buffett is Selling His Largest Stock.
Have you or your investment manager’s views of the economics of Apple’s business or its attractiveness as an investment changed since Berkshire first invested in 2016? Here we go, everyone! Buffett is back, making headlines, and this was a big one: Warre…
2011 Calculus AB Free Response #1 parts b c d | AP Calculus AB | Khan Academy
Alright, now let’s tackle Part B. Find the average velocity of the particle for the time period from zero is less than or equal to T is less than or equal to 6. So our average velocity, that’s just going to be our change in position, which we could view …
What is net worth? | Financial goals | Financial Literacy | Khan Academy
In this video, we’re going to talk a little bit about net worth. So, let’s just start with a question: if someone told you that they are worth $100,000, what does that mean to you? What do you imagine? So, let’s think about it together. Let’s say we have…