yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Refraction and frequency | Waves | Middle school physics | Khan Academy


2m read
·Nov 10, 2024

When light is going through a uniform medium like the air, or as we know, light can go through vacuum, so nothing at all, we imagine it going in a straight line. But we see something really interesting happening here when it hits this glass prism. I know it just looks like a gray triangle to you, but imagine it as a triangular piece of glass, and it's hitting it at an angle.

What this animation shows us is that the path of the light actually gets bent. Not only does it get bent, but the different frequencies of the light get bent by different amounts. Now, if you were to look at this with your eyes, you wouldn't be able to see the actual waves like we're seeing in this diagram right over here. You would just see how your brain, or how your mind, perceives the various frequencies.

That's why they made the higher frequencies here more like a violet or a purple color, and that's why they made the lower frequencies here more of a red color, because that's how your brain, or your mind, would perceive them. But you can see as this light goes from, let's say, the vacuum to this prism to this crystal or this glass, the high frequency light gets bent more. The low frequency light, which still gets bent, gets bent less, and then that essentially spreads out all the wavelengths.

When we have white light, it has all of the visible wavelengths in it. But when it hits a prism like this, if you imagine a triangular piece of glass or crystal and it hits it at an angle, well then the different wavelengths spread out. If you were to put a piece of paper here, you would see a rainbow, and that's actually how rainbows are formed.

A bunch of water particles in the air refract light exactly like this. This process of when light goes from one transparent medium to another, or a vacuum to some other medium that it can travel through that's transparent, if it hits it at an angle, it can get bent, which is what we call refraction. This is why when you look at a cup of water or at a pool at an angle, you're not seeing directly through the pool; the image gets distorted.

More Articles

View All
Why New Years Resolutions Fail & How To Succeed
Most New Year’s resolutions fail. So in this video, I want to talk about the science of why they fail and how to avoid that so your New Year’s resolutions actually succeed. I want to tell you about three of my New Year’s resolutions for 2020. The first o…
Critiquing Startup Websites With Instacart's First Designer
In this video, a special guest and I will be taking a look at companies funded by Y Combinator and giving our feedback on the design of their company’s website. Welcome to Design Review! My guest this week is Zayn Ali. He was the first product designer at…
A Napa Valley Nature Walk | National Geographic
Hi! I’m Ashley Kalina, and I’m here in beautiful Napa Valley to talk to you about National Get Outdoors Day. I’m here with National Geographic and our friends at Nature Valley. We’re here to experience the beautiful outdoors. Now, I’m not the expert here…
2015 AP Biology free response 3
The amino acid sequence of cytochrome c was determined for five different species of vertebrates. The table below shows the number of differences in the sequences between each pair of species. So just to give us some context for what we’re talking about,…
My Lightbulb Moment: Using Solar Energy to Feed a Village | National Geographic
Energy is life. My light bulb moment came during a trip to a remote part of China in 1994. We delivered simple solar home systems to families that had never before experienced electricity. Witnessing these families flip a switch and have electric lights c…
Debating Finance Junkies | Ponzi Factor | V-Log 6
Hi, this is Todd. Thank you for joining me once again for my last and final V log of the year. First, I want to apologize for being absent for so long. The last one I did was on the SP500 from almost two months ago. Unfortunately, I’m not gonna do a conti…