yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Refraction and frequency | Waves | Middle school physics | Khan Academy


2m read
·Nov 10, 2024

When light is going through a uniform medium like the air, or as we know, light can go through vacuum, so nothing at all, we imagine it going in a straight line. But we see something really interesting happening here when it hits this glass prism. I know it just looks like a gray triangle to you, but imagine it as a triangular piece of glass, and it's hitting it at an angle.

What this animation shows us is that the path of the light actually gets bent. Not only does it get bent, but the different frequencies of the light get bent by different amounts. Now, if you were to look at this with your eyes, you wouldn't be able to see the actual waves like we're seeing in this diagram right over here. You would just see how your brain, or how your mind, perceives the various frequencies.

That's why they made the higher frequencies here more like a violet or a purple color, and that's why they made the lower frequencies here more of a red color, because that's how your brain, or your mind, would perceive them. But you can see as this light goes from, let's say, the vacuum to this prism to this crystal or this glass, the high frequency light gets bent more. The low frequency light, which still gets bent, gets bent less, and then that essentially spreads out all the wavelengths.

When we have white light, it has all of the visible wavelengths in it. But when it hits a prism like this, if you imagine a triangular piece of glass or crystal and it hits it at an angle, well then the different wavelengths spread out. If you were to put a piece of paper here, you would see a rainbow, and that's actually how rainbows are formed.

A bunch of water particles in the air refract light exactly like this. This process of when light goes from one transparent medium to another, or a vacuum to some other medium that it can travel through that's transparent, if it hits it at an angle, it can get bent, which is what we call refraction. This is why when you look at a cup of water or at a pool at an angle, you're not seeing directly through the pool; the image gets distorted.

More Articles

View All
if-elif-else | Intro to CS - Python | Khan Academy
We can use an if statement to control that a particular block of code only executes when the condition evaluates to true. But what if we want to do something else only when the condition evaluates to false? Well, we can add another if statement and try an…
Travis Kalanick at Startup School 2012
Wow, this is awesome! Okay, this place is full. All right, so good to meet all of you. My name is Travis Kalanick, co-founder and CEO of Uber. Let’s see, so I do a lot of speaking because we are a technology company that is, we’re in the trenches, we’re …
Breaking Down HackerRank's Survey of 40,000 Developers with Vivek Ravisankar
All right, the Veck, why don’t we start with what you guys do, and then we’ll rewind to before you even did YC? Yes, sure! I’m S. V. Ivent, one of the founders and CEO of HackerRank. Our mission at HackerRank is to match every developer to the right job,…
Area of quadrilateral with 2 parallel sides
What we’re going to try to do in this video is find the area of this figure. We can see it’s a quadrilateral; it has one, two, three, four sides. We know that this side and this side, that they’re parallel to each other. You can see that they both form ri…
How Is Warren Buffett Spending His $80B Net Worth?
Hey guys, welcome back to the channel. In this video, we’re going to be discussing exactly how Warren Buffett spends his billions. Warren Buffett, the Oracle of Omaha as he’s referred to, he’s currently the fourth richest person in the world with a net wo…
Interpreting change in speed from velocity-time graph | Differential Calculus | Khan Academy
An object is moving along a line. The following graph gives the object’s velocity over time. For each point on the graph, is the object speeding up, slowing down, or neither? So pause this video and see if you can figure that out. All right, now let’s do…