yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Refraction and frequency | Waves | Middle school physics | Khan Academy


2m read
·Nov 10, 2024

When light is going through a uniform medium like the air, or as we know, light can go through vacuum, so nothing at all, we imagine it going in a straight line. But we see something really interesting happening here when it hits this glass prism. I know it just looks like a gray triangle to you, but imagine it as a triangular piece of glass, and it's hitting it at an angle.

What this animation shows us is that the path of the light actually gets bent. Not only does it get bent, but the different frequencies of the light get bent by different amounts. Now, if you were to look at this with your eyes, you wouldn't be able to see the actual waves like we're seeing in this diagram right over here. You would just see how your brain, or how your mind, perceives the various frequencies.

That's why they made the higher frequencies here more like a violet or a purple color, and that's why they made the lower frequencies here more of a red color, because that's how your brain, or your mind, would perceive them. But you can see as this light goes from, let's say, the vacuum to this prism to this crystal or this glass, the high frequency light gets bent more. The low frequency light, which still gets bent, gets bent less, and then that essentially spreads out all the wavelengths.

When we have white light, it has all of the visible wavelengths in it. But when it hits a prism like this, if you imagine a triangular piece of glass or crystal and it hits it at an angle, well then the different wavelengths spread out. If you were to put a piece of paper here, you would see a rainbow, and that's actually how rainbows are formed.

A bunch of water particles in the air refract light exactly like this. This process of when light goes from one transparent medium to another, or a vacuum to some other medium that it can travel through that's transparent, if it hits it at an angle, it can get bent, which is what we call refraction. This is why when you look at a cup of water or at a pool at an angle, you're not seeing directly through the pool; the image gets distorted.

More Articles

View All
Building for the Enterprise with Aaron Levie (How to Start a Startup 2014: Lecture 12)
Can we keep playing with they? Okay, good! We turn up a little bit so it’s more pump up. Okay, here we go! [Applause] Okay, I guess we got to clap, we got to find the beat, and then we got to clap to the beat. Okay, all [Music] right, okay, that’s pretty…
French and Dutch colonization | Period 2: 1607-1754 | AP US History | Khan Academy
Although the Spanish were the first European colonists in the New World, they didn’t remain alone in the Americas for very long. Just three years after Hernan Cortez captured Tenochtitlan, the French government sent its first explorer to poke around North…
Kevin O’Leary’s Guide to SURVIVING THE INFLATION | Mr. Wonderful visits Good Day New York
Rent, groceries, even the cost of heating your home is skyrocketing. Everything seems more expensive these days. So what can be done to save a little money? There’s only one person to talk to: Mr. Wonderful. He’s an entrepreneur; you know him from Shark T…
Car Cannibals | Dirty Rotten Survival
Here’s the deal, fellas. The challenge for tonight: we’re going to cannibalize the vehicles, in some way, shape, or form, to take things with us that will make us more comfortable to camp. Take anything we want off it. Ex: yes, you can take anything off t…
Khan Academy India Talent Search 2017
Hi, I’m Sal Khan, founder of the Khan Academy, and I just want to let you know about our India talent search. As you might know, Khan Academy, we’re a not-for-profit with a mission of providing a free, world-class education for anyone, anywhere. To us, t…
Example: Analyzing distribution of sum of two normally distributed random variables | Khan Academy
Shinji commutes to work, and he worries about running out of fuel. The amount of fuel he uses follows a normal distribution for each part of his commute, but the amount of fuel he uses on the way home varies more. The amounts of fuel he uses for each part…