yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Refraction and frequency | Waves | Middle school physics | Khan Academy


2m read
·Nov 10, 2024

When light is going through a uniform medium like the air, or as we know, light can go through vacuum, so nothing at all, we imagine it going in a straight line. But we see something really interesting happening here when it hits this glass prism. I know it just looks like a gray triangle to you, but imagine it as a triangular piece of glass, and it's hitting it at an angle.

What this animation shows us is that the path of the light actually gets bent. Not only does it get bent, but the different frequencies of the light get bent by different amounts. Now, if you were to look at this with your eyes, you wouldn't be able to see the actual waves like we're seeing in this diagram right over here. You would just see how your brain, or how your mind, perceives the various frequencies.

That's why they made the higher frequencies here more like a violet or a purple color, and that's why they made the lower frequencies here more of a red color, because that's how your brain, or your mind, would perceive them. But you can see as this light goes from, let's say, the vacuum to this prism to this crystal or this glass, the high frequency light gets bent more. The low frequency light, which still gets bent, gets bent less, and then that essentially spreads out all the wavelengths.

When we have white light, it has all of the visible wavelengths in it. But when it hits a prism like this, if you imagine a triangular piece of glass or crystal and it hits it at an angle, well then the different wavelengths spread out. If you were to put a piece of paper here, you would see a rainbow, and that's actually how rainbows are formed.

A bunch of water particles in the air refract light exactly like this. This process of when light goes from one transparent medium to another, or a vacuum to some other medium that it can travel through that's transparent, if it hits it at an angle, it can get bent, which is what we call refraction. This is why when you look at a cup of water or at a pool at an angle, you're not seeing directly through the pool; the image gets distorted.

More Articles

View All
How to change your life in a year
As I spend some time at home with my family this Christmas season, I’m reminded yet again how quickly time flies. It’s the end of the year again. Not really sure how that happened, but naturally, it gets me thinking about the year I just had and whether o…
How to Walk on Your Hands | Science of Stupid: Ridiculous Fails
To understand the science, we normally end up concentrating on the stupid, but every now and then, we get the chance to study at the feet, or in this case, the hands of a real expert. Meet Kevin from Switzerland. He’s going to try and set a Guinness Worl…
Engineer Builds Drone From Scratch, Destroys It on First Day | Expedition Raw
This was my first major expedition, so this is the dream, right? It’s a bit hairy to actually get on. My main job is to get aerial shots for conservation research. This expedition happened in 2012, and even though it doesn’t seem like that long ago, drone…
Slope and intercept in tables
Flynn’s sister loaned him some money, and he paid her back over time. Flynn graphed the relationship between how much time had passed in weeks since the loan and how much money he still owed his sister. What feature of the graph represents how long it too…
How UV Causes Cancer and Aging
Recently, I made a video about what the world looks like in the ultraviolet. Some things look the same, but generally, it’s hazier. Sometimes light and dark are flipped, skin looks blotchier, and fake teeth stand out. Whoa! Smile for me. Oh my goodness, …
Beautiful and Elusive: This Bird Is Losing Its Home | National Geographic
[Music] My name is Roger Factor. I’m a conservationist working for the Wildlife Conservation Society. Most of my weekend, actually, when I’m not busy doing some other thing on conservation, I’m out bird-watching. We are inside the Colloforus today, just…