yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Refraction and frequency | Waves | Middle school physics | Khan Academy


2m read
·Nov 10, 2024

When light is going through a uniform medium like the air, or as we know, light can go through vacuum, so nothing at all, we imagine it going in a straight line. But we see something really interesting happening here when it hits this glass prism. I know it just looks like a gray triangle to you, but imagine it as a triangular piece of glass, and it's hitting it at an angle.

What this animation shows us is that the path of the light actually gets bent. Not only does it get bent, but the different frequencies of the light get bent by different amounts. Now, if you were to look at this with your eyes, you wouldn't be able to see the actual waves like we're seeing in this diagram right over here. You would just see how your brain, or how your mind, perceives the various frequencies.

That's why they made the higher frequencies here more like a violet or a purple color, and that's why they made the lower frequencies here more of a red color, because that's how your brain, or your mind, would perceive them. But you can see as this light goes from, let's say, the vacuum to this prism to this crystal or this glass, the high frequency light gets bent more. The low frequency light, which still gets bent, gets bent less, and then that essentially spreads out all the wavelengths.

When we have white light, it has all of the visible wavelengths in it. But when it hits a prism like this, if you imagine a triangular piece of glass or crystal and it hits it at an angle, well then the different wavelengths spread out. If you were to put a piece of paper here, you would see a rainbow, and that's actually how rainbows are formed.

A bunch of water particles in the air refract light exactly like this. This process of when light goes from one transparent medium to another, or a vacuum to some other medium that it can travel through that's transparent, if it hits it at an angle, it can get bent, which is what we call refraction. This is why when you look at a cup of water or at a pool at an angle, you're not seeing directly through the pool; the image gets distorted.

More Articles

View All
Science Fiction Inspires the Future of Science | National Geographic
The wonders of the future, the marvels of the presence. Science fiction and science innovation have been intertwined since sci-fi’s origins. From video chat to self-driving cars to space flight, there’s the science fiction and the science reality. Sci-fi …
Dilating a triangle example
We are asked to draw the image of triangle ABC under a dilation whose center is P and scale factor is one fourth. So pause this video and at least think about how you would do this. You don’t have access to the tool that I do, where I can move this around…
Don’t Be “Distracted by Their Darkness” | Marcus Aurelius on Success
Even though the Stoic teachings are geared towards tranquility, the end goal is living virtuously and in accordance with nature. So, there’s something as being ‘successful’ as a Stoic, which is living a life of virtue. But no matter what we pursue, the wo…
last words
Hey, Vsauce. Michael here. On December 17th, 1977, Gary Gilmore was executed for murder. He was the first prisoner executed by the United States after a 10-year suspension of the practice. When asked if he had any last words, he simply replied, “let’s do…
First Image of a Black Hole!
This is the first-ever image of a black hole released by the Event Horizon Telescope collaboration on April 10th, 2019. It shows plasma orbiting the supermassive black hole at the center of the galaxy M87. The bright region shows where plasma is coming to…
Rome becomes dominant | World History | Khan Academy
Last video, we end with the conquests of Alexander the Great. How he’s able to conquer most of the map that we see right up here, especially from Greece all the way through the Middle East, through Persia and getting to the borders of India, co-conquering…