yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Misconceptions About Falling Objects


3m read
·Nov 10, 2024

Let's say Jack holds both balls above his head and then he drops them at exactly the same time. What do you expect to see? Well, they're going to hit the ground at the same time. I expect them to both land at the same time. The same time, same time!

This one to hit the ground first; however, they will actually both hit the ground at the same time. Why is that? Science! Yeah, science!

Now, the black one clearly feels a lot heavier, so the standard misconception is to believe that the black ball will accelerate at a greater rate and reach the ground first. This year, many people had an idea that both balls would land at the same time, but they didn't know exactly why. I found there were some different misconceptions. For example, many people seem to think that as an object falls towards the Earth, it falls with a constant speed from this height.

Yeah, pretty much just a constant speed all the way down. Speed? Yeah, I think it'll be the same constant speed. I think it's constant. I seem to remember it being constant. I did decently in physics, and I seem to remember that's the answer.

Whereas the truth is the speed of both balls is changing all the time. The balls are speeding up as they go towards the ground. That's what the force of gravity does on them; it makes them accelerate, it gets them to speed up.

Another misconception I discovered was that some people believe both balls should have the same gravitational force on them, even though the black ball is clearly much, much heavier. The reason I think they said this was because they knew both balls needed to reach the ground at the same time, so they reasoned that the force on them must be the same.

Tell me about how the gravitational force on this ball compares to the gravitational force on that ball. The force is the same. It's going to be very similar in terms of gravitational pull. They both have the same, and they'll fall at the same rate.

I'm not like Einstein, but same gravitational force around the whole world, right? 'Cause the gravitational pull on the Earth is the same on both objects. Are you saying that the force on them is the same? The pull is the same, but you felt the pull, and you've told me the pull is different.

No, I said the weight is different. I didn't say the pull is different. It is heavier and has more gravitational pull, but when I drop them, then they get equal gravitational pull.

Somehow, don’t you think it's going to be like five times as much? Yeah, you think, but it's not the way you're asking it. Yes, but scientifically speaking, no. The gravitational force on both these balls is the same.

Okay, the gravitational force on both of these balls is the same. Is that what you actually believe? No, but it is. Tell me, tell me what you believe. I believe it should be more on this simply for the fact that this is heavier, and just intuition tells me that it should be more.

But after learning physics, we learn that it is actually the same. I actually think the force on this ball is more than the force on this. I swear I'm not trying to mess with you!

So like, in real life, in real life, and in physics, I will tell you that the force on this ball is more.

All right, ready? Three, two, one. Yep! See? Same time, same time, same time!

I would say the force on the medicine ball is like a lot more because it's got a lot more weight. It's got a lot more mass, but it's got a lot more inertia.

Yeah, yeah! Oh, you guys remember that, right? It's got a lot of resistance to acceleration, so it takes more force to get it accelerating at the same rate as this ball, and that's why they accelerate at the same rate.

Thank you guys so much for playing along. I appreciate that. Sorry, it's all right.

More Articles

View All
Introduction to life insurance | Insurance | Financial literacy | Khan Academy
So let’s talk a little bit about what’s probably not your favorite subject. It’s definitely not mine, and that is death. Uh, and uh, it’s not something a lot of us think about. I remember when I was a kid and I used to see these ads on TV for life insuran…
Why Robinhood Blocked Gamestop. (Full Explanation)
We made the decision, uh, in the morning to limit the buying of about 13 securities on our platform. So, to be clear, uh, customers could still sell those securities if they had positions in them, and they could also trade in the thousands of other securi…
Geometric constructions: congruent angles | Congruence | High school geometry | Khan Academy
What we’re going to do in this video is learn to construct congruent angles. And we’re going to do it with, of course, a pen or a pencil. Here, I’m going to use a ruler as a straight edge, and then I’m going to use a tool known as a compass, which looks a…
Why I have 11 Credit Cards…
What’s up you guys? It’s Graham here. So how ridiculous is this? I now have 11 credit cards! Now I was perfectly happy and perfectly content having 10 credit cards. I really didn’t need another one. But I saw the Credit Shifu, who uploaded a video the oth…
How to Keep Your Child Learning & Happy! at Home
Hello! Thank you for joining us today. We know how busy you are as parents of young children, particularly during these times with so much going on in the world. We want to make the session a really valuable use of your time, so we’re going to jump right …
Safari Live - Day 280 | National Geographic
This program features live coverage of an African safari and may include animal kills and carcasses. Viewer discretion is advised. So, you can see the beautiful skies; there are clouds still everywhere, and it’s nice and warm at the moment—not too bad. G…