yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

2015 AP Calculus BC 5a | AP Calculus BC solved exams | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

Consider the function ( f(x) ) is equal to ( \frac{1}{x^2} - Kx ) where ( K ) is a nonzero constant. The derivative of ( f ) is given by, and they give us this expression right over here. It's nice that they took the derivative for us.

Now part A, let ( K ) equal 3 so that ( f(x) ) is equal to ( \frac{1}{x^2} - 3x ). So they said ( K ) equal to three. Write an equation for the line tangent to the graph of ( F ) at the point whose x-coordinate is four.

To find an equation for a line, the equation of a line is going to be of the form ( y = mx + b ) where ( m ) is the slope of the line and ( b ) is the y-intercept. The slope of the line right over here, this needs to be equal to the derivative evaluated when ( x ) is equal to 4.

So we could say ( y = ) or let me write it this way, we could say that ( m ) is going to be equal to ( F' ) when ( x ) is equal to 4. So ( F' ) of 4 which is equal to, well we know that ( K ) is equal to three. They gave us ( F' ) of ( x ), so it's going to be ( 3 - \frac{2 \cdot 4}{4^2 - 3 \cdot 4} ) squared.

Now, this is an eight right over here. All I did is ( F' ) of ( x ) when ( K ) is equal to 3 is going to be ( 3 - \frac{2x}{x^2 - 3x} ), and all of that squared. I want to evaluate what ( F' ) of four is. So every place where I saw an ( x ), I substitute it with a four. Where I saw the ( k ), ( k ) is three, and so this is going to be equal to the numerator ( 3 - 8 ) is (-5) over, this is ( 16 - 12 ) which is going to be ( 4 ).

So ( 16 - 12 ) is ( 4 ), and then we square it, so it's going to be ( \frac{-5}{4} ) squared. And so let me write this way: ( m = \frac{-5}{16} ).

So how do we figure out ( b )? Now, what are the coordinates when ( x ) is equal to 4? What is ( y ) going to be equal to? Well, ( Y = f(x) ), so we know that ( y ) on the curve, we know that ( Y ) is going to be equal to ( f(4) ), so before we evaluated ( f' ) of four, now we're going to evaluate ( y ) as being ( f(4) ), which is equal to ( \frac{1}{4^2} - 3 \cdot 4 ).

That is equal to ( \frac{1}{16 - 12} ) which is ( \frac{1}{4} ). So this point right here when ( x ) is 4, then ( y ) is equal to ( \frac{1}{4} ).

So we can use that information to solve for ( b ) when ( y ) is ( \frac{1}{4} ). So we're going to say ( y = m \frac{-5}{16} x + b ). Well, when ( y = \frac{1}{4} ) and ( x = 4 ), then plus ( b ).

So I can now solve for ( b ). All I did is I used ( F' ) of ( x ) to figure out ( m ) when ( x ) is equal to 4. Then I said, okay, well what is the value of ( y ) when ( x ) is equal to 4? So if I know ( y ), ( m ), and ( x ), then I can solve for ( b ).

So let's just do that: ( \frac{1}{4} = 4 \cdot \frac{-5}{16} + b ). I can add ( \frac{5}{4} ) to both sides, and I get ( \frac{5}{4} + \frac{1}{4} = b ) or ( b = \frac{6}{4} ) which you could say, well there's a bunch of ways you could write this.

We could just say this is equal to ( 1.5 ). So our equation is ( y = \frac{-5}{16} x + 1.5 ) or if we wanted to write everything as a fraction, we could say ( y = \frac{-5}{16} x + \frac{3}{2} ).

And there you go.

More Articles

View All
Tatanka Means: Playing Hobbamock | Saints & Strangers
[Music] Habam Mok is the fierce warrior of the Pona kit and a right-hand man to Masasu. It’s really, you know, it’s an honor to play, uh, somebody in history that, you know, made a profound difference, and he definitely did. I think of the beginning he wa…
Solving the Mystery of the Boiling River | Podcast | Overheard at National Geographic
My grandfather, my dad’s dad, he was just a really fantastic storyteller. There’s just one story that he would tell about Paititi. Paititi is in Peru, what we call El Dorado, right? The golden city. So imagine this big mysterious city made entirely of gol…
Multi digit division strategies for decimals
In a previous video, we started thinking about strategies for dividing numbers where either the numbers or decimals or their quotients are going to be decimals. So now let’s continue that. We’re going to do slightly more involved examples. Let’s say we w…
Jeff Bezos – March 1998, earliest long speech
Good evening and welcome to the annual A.B. Dick lecture on entrepreneurship at Lake Forest College. Lake Forest College, 32 miles north of Chicago, was established in 1857 as a private co-educational liberal arts college. Lake Forest College engages our …
Pattern when dividing by tenths and hundredths
Let’s see if we can figure out what 2 divided by 0.1, or 1⁄10, is. Pause this video and see if you can figure that out. All right, now let’s work through it together. There are a couple of ways that we can approach it. One way is to think about everythin…
Example using estimation for decimal products
We are told that 52 times 762 is equal to 39,624, and then we’re told to match each expression to its product. These products, this is the exercise on Khan Academy. You can move them around so the product can be matched to the appropriate expression. So p…