yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

2015 AP Calculus BC 5a | AP Calculus BC solved exams | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

Consider the function ( f(x) ) is equal to ( \frac{1}{x^2} - Kx ) where ( K ) is a nonzero constant. The derivative of ( f ) is given by, and they give us this expression right over here. It's nice that they took the derivative for us.

Now part A, let ( K ) equal 3 so that ( f(x) ) is equal to ( \frac{1}{x^2} - 3x ). So they said ( K ) equal to three. Write an equation for the line tangent to the graph of ( F ) at the point whose x-coordinate is four.

To find an equation for a line, the equation of a line is going to be of the form ( y = mx + b ) where ( m ) is the slope of the line and ( b ) is the y-intercept. The slope of the line right over here, this needs to be equal to the derivative evaluated when ( x ) is equal to 4.

So we could say ( y = ) or let me write it this way, we could say that ( m ) is going to be equal to ( F' ) when ( x ) is equal to 4. So ( F' ) of 4 which is equal to, well we know that ( K ) is equal to three. They gave us ( F' ) of ( x ), so it's going to be ( 3 - \frac{2 \cdot 4}{4^2 - 3 \cdot 4} ) squared.

Now, this is an eight right over here. All I did is ( F' ) of ( x ) when ( K ) is equal to 3 is going to be ( 3 - \frac{2x}{x^2 - 3x} ), and all of that squared. I want to evaluate what ( F' ) of four is. So every place where I saw an ( x ), I substitute it with a four. Where I saw the ( k ), ( k ) is three, and so this is going to be equal to the numerator ( 3 - 8 ) is (-5) over, this is ( 16 - 12 ) which is going to be ( 4 ).

So ( 16 - 12 ) is ( 4 ), and then we square it, so it's going to be ( \frac{-5}{4} ) squared. And so let me write this way: ( m = \frac{-5}{16} ).

So how do we figure out ( b )? Now, what are the coordinates when ( x ) is equal to 4? What is ( y ) going to be equal to? Well, ( Y = f(x) ), so we know that ( y ) on the curve, we know that ( Y ) is going to be equal to ( f(4) ), so before we evaluated ( f' ) of four, now we're going to evaluate ( y ) as being ( f(4) ), which is equal to ( \frac{1}{4^2} - 3 \cdot 4 ).

That is equal to ( \frac{1}{16 - 12} ) which is ( \frac{1}{4} ). So this point right here when ( x ) is 4, then ( y ) is equal to ( \frac{1}{4} ).

So we can use that information to solve for ( b ) when ( y ) is ( \frac{1}{4} ). So we're going to say ( y = m \frac{-5}{16} x + b ). Well, when ( y = \frac{1}{4} ) and ( x = 4 ), then plus ( b ).

So I can now solve for ( b ). All I did is I used ( F' ) of ( x ) to figure out ( m ) when ( x ) is equal to 4. Then I said, okay, well what is the value of ( y ) when ( x ) is equal to 4? So if I know ( y ), ( m ), and ( x ), then I can solve for ( b ).

So let's just do that: ( \frac{1}{4} = 4 \cdot \frac{-5}{16} + b ). I can add ( \frac{5}{4} ) to both sides, and I get ( \frac{5}{4} + \frac{1}{4} = b ) or ( b = \frac{6}{4} ) which you could say, well there's a bunch of ways you could write this.

We could just say this is equal to ( 1.5 ). So our equation is ( y = \frac{-5}{16} x + 1.5 ) or if we wanted to write everything as a fraction, we could say ( y = \frac{-5}{16} x + \frac{3}{2} ).

And there you go.

More Articles

View All
Revolving vs installment credit | Loans and debt | Financial literacy | Khan Academy
So, let’s talk about two very broad categories of loans. One is installment loans, and one is revolving loans or revolving credit. If we’re talking about installment loans or installment credit, that’s a situation where you’re borrowing one usually large…
Why We’re All Burning Out | Byung-Chul Han’s Warning to the World
Aren’t we living in the best age ever!? I mean, look at the world around us! Modern society grants us endless possibilities. Contrary to our grandparents (and their parents), who were told to just pray to God, have kids, work in the factory, and shut up, …
Khan Academy in the classroom | Limits and continuity | AP Calculus AB | Khan Academy
We have this big moment, and the moment is that for 35 years of my teaching career, I walked into the classroom having no idea if the kids had done the homework or what their commitment was to this subject. And then suddenly, there’s this coaching platfor…
Property insurance | Insurance | Financial Literacy | Khan Academy
Let’s talk a little bit about property insurance. The first question is, why would you want to insure property? Well, for a lot of folks, their property is a lot of, uh, the most expensive things they have that would be very hard to replace if something b…
PEOPLE WON'T WORK IN WAR-TORN CITIES
The economies change radically. The problem with saying everybody has to work in the office is you won’t be able to hire the best talent. When we went out for financial services people in our operating company, the best talent told us, “If I have to come …
REVEALING MY BRAND NEW HOME TOUR!
What’s up, guys? It’s Graham here. So, I’m really excited to be able to share this video with everyone because I just closed on my new home, and the time has finally come that I could tour you around, show you the new spot, and then, as I’m sure everyone …