yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

2015 AP Calculus BC 5a | AP Calculus BC solved exams | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

Consider the function ( f(x) ) is equal to ( \frac{1}{x^2} - Kx ) where ( K ) is a nonzero constant. The derivative of ( f ) is given by, and they give us this expression right over here. It's nice that they took the derivative for us.

Now part A, let ( K ) equal 3 so that ( f(x) ) is equal to ( \frac{1}{x^2} - 3x ). So they said ( K ) equal to three. Write an equation for the line tangent to the graph of ( F ) at the point whose x-coordinate is four.

To find an equation for a line, the equation of a line is going to be of the form ( y = mx + b ) where ( m ) is the slope of the line and ( b ) is the y-intercept. The slope of the line right over here, this needs to be equal to the derivative evaluated when ( x ) is equal to 4.

So we could say ( y = ) or let me write it this way, we could say that ( m ) is going to be equal to ( F' ) when ( x ) is equal to 4. So ( F' ) of 4 which is equal to, well we know that ( K ) is equal to three. They gave us ( F' ) of ( x ), so it's going to be ( 3 - \frac{2 \cdot 4}{4^2 - 3 \cdot 4} ) squared.

Now, this is an eight right over here. All I did is ( F' ) of ( x ) when ( K ) is equal to 3 is going to be ( 3 - \frac{2x}{x^2 - 3x} ), and all of that squared. I want to evaluate what ( F' ) of four is. So every place where I saw an ( x ), I substitute it with a four. Where I saw the ( k ), ( k ) is three, and so this is going to be equal to the numerator ( 3 - 8 ) is (-5) over, this is ( 16 - 12 ) which is going to be ( 4 ).

So ( 16 - 12 ) is ( 4 ), and then we square it, so it's going to be ( \frac{-5}{4} ) squared. And so let me write this way: ( m = \frac{-5}{16} ).

So how do we figure out ( b )? Now, what are the coordinates when ( x ) is equal to 4? What is ( y ) going to be equal to? Well, ( Y = f(x) ), so we know that ( y ) on the curve, we know that ( Y ) is going to be equal to ( f(4) ), so before we evaluated ( f' ) of four, now we're going to evaluate ( y ) as being ( f(4) ), which is equal to ( \frac{1}{4^2} - 3 \cdot 4 ).

That is equal to ( \frac{1}{16 - 12} ) which is ( \frac{1}{4} ). So this point right here when ( x ) is 4, then ( y ) is equal to ( \frac{1}{4} ).

So we can use that information to solve for ( b ) when ( y ) is ( \frac{1}{4} ). So we're going to say ( y = m \frac{-5}{16} x + b ). Well, when ( y = \frac{1}{4} ) and ( x = 4 ), then plus ( b ).

So I can now solve for ( b ). All I did is I used ( F' ) of ( x ) to figure out ( m ) when ( x ) is equal to 4. Then I said, okay, well what is the value of ( y ) when ( x ) is equal to 4? So if I know ( y ), ( m ), and ( x ), then I can solve for ( b ).

So let's just do that: ( \frac{1}{4} = 4 \cdot \frac{-5}{16} + b ). I can add ( \frac{5}{4} ) to both sides, and I get ( \frac{5}{4} + \frac{1}{4} = b ) or ( b = \frac{6}{4} ) which you could say, well there's a bunch of ways you could write this.

We could just say this is equal to ( 1.5 ). So our equation is ( y = \frac{-5}{16} x + 1.5 ) or if we wanted to write everything as a fraction, we could say ( y = \frac{-5}{16} x + \frac{3}{2} ).

And there you go.

More Articles

View All
Charlie Munger: The Real Estate Crash of a GENERATION
Billionaire investor Charlie Munger just issued a dire warning about what’s ahead for the U.S. real estate market, and unlike most people who issue these types of predictions, Munger actually knows a thing or two about the topic. Before he rose to fame as…
Limits at infinity using algebra | Limits | Differential Calculus | Khan Academy
Let’s think about the limit of the square root of 100 plus x minus the square root of x as x approaches infinity. I encourage you to pause this video and try to figure this out on your own. So, I’m assuming you’ve had a go at it. First, let’s just try to…
Worked example: analyzing a generic food web | Middle school biology | Khan Academy
What we have here is a diagram of a food web that shows us how matter and energy are transferred between organisms in an ecosystem, but it’s a little bit abstract. They don’t tell us what these organisms are; they just say organism one, organism two, orga…
Lewis diagrams for molecules | Chemistry | Khan Academy
Let’s draw LS draw structures for certain molecules. It’s a lot of fun to do that. Okay, now the first thing we need to do to draw these structures is to identify the number of valence electrons. Okay, and we’ve talked about these valence electrons in ou…
The Odd Number Rule
Hey, Vsauce, Michael here. Why though? Why are any of us here? What’s the purpose? What does it all mean? Well, sometimes if we listen closely enough when we ask why, we can hear an answer, and it’s another question: Why? Why? What? Our journey begins he…
Top 5 Stocks the Smart Money is Buying in the 2022 Crash
Wouldn’t it be fantastic if every single quarter we, as average Joe investors, got to look inside the minds of all the best investors in the world and see what they were buying? Ta-da! We can! The power of the 13-F filing only catches the information with…