yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

2015 AP Calculus BC 5a | AP Calculus BC solved exams | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

Consider the function ( f(x) ) is equal to ( \frac{1}{x^2} - Kx ) where ( K ) is a nonzero constant. The derivative of ( f ) is given by, and they give us this expression right over here. It's nice that they took the derivative for us.

Now part A, let ( K ) equal 3 so that ( f(x) ) is equal to ( \frac{1}{x^2} - 3x ). So they said ( K ) equal to three. Write an equation for the line tangent to the graph of ( F ) at the point whose x-coordinate is four.

To find an equation for a line, the equation of a line is going to be of the form ( y = mx + b ) where ( m ) is the slope of the line and ( b ) is the y-intercept. The slope of the line right over here, this needs to be equal to the derivative evaluated when ( x ) is equal to 4.

So we could say ( y = ) or let me write it this way, we could say that ( m ) is going to be equal to ( F' ) when ( x ) is equal to 4. So ( F' ) of 4 which is equal to, well we know that ( K ) is equal to three. They gave us ( F' ) of ( x ), so it's going to be ( 3 - \frac{2 \cdot 4}{4^2 - 3 \cdot 4} ) squared.

Now, this is an eight right over here. All I did is ( F' ) of ( x ) when ( K ) is equal to 3 is going to be ( 3 - \frac{2x}{x^2 - 3x} ), and all of that squared. I want to evaluate what ( F' ) of four is. So every place where I saw an ( x ), I substitute it with a four. Where I saw the ( k ), ( k ) is three, and so this is going to be equal to the numerator ( 3 - 8 ) is (-5) over, this is ( 16 - 12 ) which is going to be ( 4 ).

So ( 16 - 12 ) is ( 4 ), and then we square it, so it's going to be ( \frac{-5}{4} ) squared. And so let me write this way: ( m = \frac{-5}{16} ).

So how do we figure out ( b )? Now, what are the coordinates when ( x ) is equal to 4? What is ( y ) going to be equal to? Well, ( Y = f(x) ), so we know that ( y ) on the curve, we know that ( Y ) is going to be equal to ( f(4) ), so before we evaluated ( f' ) of four, now we're going to evaluate ( y ) as being ( f(4) ), which is equal to ( \frac{1}{4^2} - 3 \cdot 4 ).

That is equal to ( \frac{1}{16 - 12} ) which is ( \frac{1}{4} ). So this point right here when ( x ) is 4, then ( y ) is equal to ( \frac{1}{4} ).

So we can use that information to solve for ( b ) when ( y ) is ( \frac{1}{4} ). So we're going to say ( y = m \frac{-5}{16} x + b ). Well, when ( y = \frac{1}{4} ) and ( x = 4 ), then plus ( b ).

So I can now solve for ( b ). All I did is I used ( F' ) of ( x ) to figure out ( m ) when ( x ) is equal to 4. Then I said, okay, well what is the value of ( y ) when ( x ) is equal to 4? So if I know ( y ), ( m ), and ( x ), then I can solve for ( b ).

So let's just do that: ( \frac{1}{4} = 4 \cdot \frac{-5}{16} + b ). I can add ( \frac{5}{4} ) to both sides, and I get ( \frac{5}{4} + \frac{1}{4} = b ) or ( b = \frac{6}{4} ) which you could say, well there's a bunch of ways you could write this.

We could just say this is equal to ( 1.5 ). So our equation is ( y = \frac{-5}{16} x + 1.5 ) or if we wanted to write everything as a fraction, we could say ( y = \frac{-5}{16} x + \frac{3}{2} ).

And there you go.

More Articles

View All
Only the individual can search for Truth!
Truth is a very difficult thing to come by. The universe is mostly random and mostly full of false beliefs, and so truth requires a lot of rigor. The goal standards for truth are that you have to test it against a larger system that will give you objectiv…
Watch Musk Ox Battle One of the Harshest Climates on the Planet | Short Film Showcase
The eyes stretch to nothing but an empty horizon and a landscape covered in its entirety by endless white sheets of snow. And with that, it’s freezing temperatures and harsh conditions. How could anyone or anything possibly survive in such conditions for …
Miracles and inductive inference
Atheists and these alike are both affected by the problem of induction. Frustratingly, there’s no rational reason to think that the future will look like the best. The reason we do have the idea that it will, to use Hume’s term, is merely the result of ha…
Best Spot in the Microwave? - Smarter Every Day 6
[Music] Okay, it’s me, Destin. I am here with Mike Simons at the National Electronics Museum, and he’s going to show us something that we interact with every day that you probably didn’t know. So, what do you got for us, Mike? (Mike) We have a microwav…
Intro to the comparative and the superlative | The parts of speech | Grammar | Khan Academy
So we’ve got these three penguins: grammarians. We’ve got Raul, who you may remember from his sweet mohawk. We’ve got Cesar, and we’ve got Gabriella, three Magellanic penguins from Argentina, and they are all different amounts of happy. Cesar is a medium …
Impact of changes to trophic pyramids | High school biology | Khan Academy
What we see here is known as a trophic pyramid, and the word “trophic” in a biology context is referring to food relationships. So, one way to think about this is that it tells us who is eating whom and who is producing energy, and then who is able to lev…