yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

2015 AP Calculus BC 5a | AP Calculus BC solved exams | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

Consider the function ( f(x) ) is equal to ( \frac{1}{x^2} - Kx ) where ( K ) is a nonzero constant. The derivative of ( f ) is given by, and they give us this expression right over here. It's nice that they took the derivative for us.

Now part A, let ( K ) equal 3 so that ( f(x) ) is equal to ( \frac{1}{x^2} - 3x ). So they said ( K ) equal to three. Write an equation for the line tangent to the graph of ( F ) at the point whose x-coordinate is four.

To find an equation for a line, the equation of a line is going to be of the form ( y = mx + b ) where ( m ) is the slope of the line and ( b ) is the y-intercept. The slope of the line right over here, this needs to be equal to the derivative evaluated when ( x ) is equal to 4.

So we could say ( y = ) or let me write it this way, we could say that ( m ) is going to be equal to ( F' ) when ( x ) is equal to 4. So ( F' ) of 4 which is equal to, well we know that ( K ) is equal to three. They gave us ( F' ) of ( x ), so it's going to be ( 3 - \frac{2 \cdot 4}{4^2 - 3 \cdot 4} ) squared.

Now, this is an eight right over here. All I did is ( F' ) of ( x ) when ( K ) is equal to 3 is going to be ( 3 - \frac{2x}{x^2 - 3x} ), and all of that squared. I want to evaluate what ( F' ) of four is. So every place where I saw an ( x ), I substitute it with a four. Where I saw the ( k ), ( k ) is three, and so this is going to be equal to the numerator ( 3 - 8 ) is (-5) over, this is ( 16 - 12 ) which is going to be ( 4 ).

So ( 16 - 12 ) is ( 4 ), and then we square it, so it's going to be ( \frac{-5}{4} ) squared. And so let me write this way: ( m = \frac{-5}{16} ).

So how do we figure out ( b )? Now, what are the coordinates when ( x ) is equal to 4? What is ( y ) going to be equal to? Well, ( Y = f(x) ), so we know that ( y ) on the curve, we know that ( Y ) is going to be equal to ( f(4) ), so before we evaluated ( f' ) of four, now we're going to evaluate ( y ) as being ( f(4) ), which is equal to ( \frac{1}{4^2} - 3 \cdot 4 ).

That is equal to ( \frac{1}{16 - 12} ) which is ( \frac{1}{4} ). So this point right here when ( x ) is 4, then ( y ) is equal to ( \frac{1}{4} ).

So we can use that information to solve for ( b ) when ( y ) is ( \frac{1}{4} ). So we're going to say ( y = m \frac{-5}{16} x + b ). Well, when ( y = \frac{1}{4} ) and ( x = 4 ), then plus ( b ).

So I can now solve for ( b ). All I did is I used ( F' ) of ( x ) to figure out ( m ) when ( x ) is equal to 4. Then I said, okay, well what is the value of ( y ) when ( x ) is equal to 4? So if I know ( y ), ( m ), and ( x ), then I can solve for ( b ).

So let's just do that: ( \frac{1}{4} = 4 \cdot \frac{-5}{16} + b ). I can add ( \frac{5}{4} ) to both sides, and I get ( \frac{5}{4} + \frac{1}{4} = b ) or ( b = \frac{6}{4} ) which you could say, well there's a bunch of ways you could write this.

We could just say this is equal to ( 1.5 ). So our equation is ( y = \frac{-5}{16} x + 1.5 ) or if we wanted to write everything as a fraction, we could say ( y = \frac{-5}{16} x + \frac{3}{2} ).

And there you go.

More Articles

View All
I Secretly Pitched A Fake Business On Shark Tank
So do we have a deal? No, no, never. You need your head examined. That’s just terrible. Okay, so let’s back up for a second. This is Barbara Corcoran. She sold her real estate brokerage in 2001 for 66 million dollars. She’s a judge on the Emmy Award-winn…
Thousands Of Miles Dead Reckoning | StarTalk
We’re featuring my interview with traditional Polynesian ocean Voyager 9 OA Thompson, and I had to ask him how the ancient Polynesians navigated 2400 miles from Hawaii to Tahiti without being able to calculate longitude. Let’s check it out. Okay, imagine…
Marcus Aurelius' Advice For Better Days
At dawn, when you have trouble getting out of bed, tell yourself, “I have to go to work as a human being. What do I have to complain of if I’m going to do what I was born for? The things I was brought into this world to do.” Or is this what I was created…
Baidu's AI Lab Director on Advancing Speech Recognition and Simulation
Today we have Adam Coats here for an interview. Um, Adam, uh, you run the AI Lab at Buu in Silicon Valley. Um, could you just give us a quick intro and explain what Buu is for people who don’t know? Yeah, um, so BYU is actually the largest search engine …
Nat Geo Photographers: How They Got Their Start | National Geographic
[Music] You know, we all start from somewhere. For me, I thought if I could just give a voice and a name to wildlife by using my camera, then that’s it. It was very important for me to immortalize stories, so I started capturing moments happening around m…
A Stoic Approach To Envy
Since many of you asked, I decided to deliver. As a sequel to my video about jealousy, let’s talk about envy. What is envy? How should we handle it? What can we learn from the Stoics in regards to envy? And is it really a bad thing? First of all, I want …