yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

What Is The Magnus Force?


3m read
·Nov 10, 2024

[Applause] So I'm back at the University of Sydney with Rod Cross. Hi Derek! And today we're talking about the effects of air on projectiles.

We normally neglect these effects when I'm teaching students about projectiles. I tell them, "Forget about the air. Let's just talk about gravity," because it simplifies the problem. But air is real; it's heavy stuff, and it affects the flight of all projectiles.

All right, well, why don't we do a little experiment to show the effect that air can have? This is a surprising experiment that we've set up here. First of all, I'll show you what happens to a tennis ball when it rolls down this inclined ramp. Well, that falls exactly like I would expect—basically a parabolic path as predicted.

But let's try something a little bit lighter, such as this paper cylinder. Okay, it weighs only a gram or so. The effect of the air will be more important. Watch what happens this time.

Okay, wow! So the paper cylinder goes backwards. That doesn't make any sense! I mean, it was rolling forwards off that ramp.

No, it does it every time, and it's because of an effect known as the Magnus Force that's acting on the spinning cylinder. It acts on a spinning ball as well, and people who play sports know about it, but they wouldn't call it a Magnus Force.

Why is it called the Magnus Force? Because Magnus was the first guy who discovered it when he was investigating why cannonballs curve as they propagate through the air.

Aha! So what did he find out? What he found is that when a ball or any object is spinning like this, there's a force perpendicular to the spin axis. If it's spinning clockwise or has Top Spin, the force is down. If it's spinning anticlockwise (counterclockwise), the force is up.

So how do we get a Magnus force on a ball? As the ball's moving forward through the air, if it's spinning, the air is flowing around the ball from the front to the back. The ball is spinning in the same direction as the airflow at the top of the ball but in the opposite direction at the bottom. Because of friction between the air and the ball surface, air is dragged around the top of the ball downwards towards the back.

But at the bottom of the ball, the air flow and the ball are opposite directions. The air comes to a screeching halt fairly soon. Instead of being deflected upwards, the net result is air is deflected downwards. Due to Newton's third law, the air exerts an equal and opposite force on the ball, which is upwards.

So how would sports players take advantage of the Magnus Force? They make the ball curve through the air by a different amount than that due to gravity alone. A golfer will strike a golf ball with backspin that exerts a vertical force, a lift force on the ball, that keeps it in the air for a longer time, and therefore it travels further.

A tennis player will hit the ball with Top Spin that causes the ball to curve down onto the court after it clears the net. A baseball or cricket player will also do that, but in addition, they can make a ball curve about a vertical axis, in which case the ball will either curve to the left or to the right away from the batter, making it much more difficult to hit the ball. That's the object of the exercise.

I see. So are there any other air effects that we need to be aware of?

There's quite a few, actually. There's the buoyant force acting on a balloon, for example, or any object. There's a drag force acting backwards that slows the ball down, and if the ball happens to have seams, then there's a sod force acting on the ball.

Uh-huh! Well, that sounds like a whole other episode—balls with seams!

Yeah, that is. All right, well, stay tuned if you want to find out how air affects balls with seams!

More Articles

View All
Turning The Tide | Plastic on the Ganges
[Music] You take this incredible material that lasts for hundreds of years. We use it for a few seconds, a few minutes, and then we throw it away. [Music] [Music] I’m Heather Coldway. I’m a National Geographic fellow, and I’m the science co-lead for the …
Akashinga: The Brave Ones | National Geographic
So foreign, today we are expecting 500 results that are coming in from 500. He wants 822 graduates. This training is going to be hard, but I know these ladies. They are strong ladies. As we are coming here, everyone—we know we are coming here for training…
Root mean square deviation (RMSD)
So we are interested in studying the relationship between the amount that folks study for a test and their score on a test, where the score is between zero and six. So what we’re going to do is go look at the people who took the tests. We’re going to plot…
How Many Photos Have Been Taken?
Hey, Vsauce. Michael here. In 1826, this became the very first photograph ever taken. And in 1992, this became the very first image ever uploaded to the web. But how many photographs have we all taken, altogether, throughout all of history? Well, 1000memo…
Michael Jibson: Playing Myles Standish | Saints & Strangers
Miles Sish was the um military representative on the Mayflower. He went out as a kind of pilgrim as well to find his patch of land, I suppose, in the New World. But he was the military adviser. He was always at the front of the group of people that would …
A Brief History of How Plastic Has Changed Our World | National Geographic
Plastics are being used to such an extent throughout the world that we may well ask what was used before its discovery. Before 1950, plastic was barely a part of American life. So how did our culture become so plastic? Modern plastic didn’t really get it…