yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

What Is The Magnus Force?


3m read
·Nov 10, 2024

[Applause] So I'm back at the University of Sydney with Rod Cross. Hi Derek! And today we're talking about the effects of air on projectiles.

We normally neglect these effects when I'm teaching students about projectiles. I tell them, "Forget about the air. Let's just talk about gravity," because it simplifies the problem. But air is real; it's heavy stuff, and it affects the flight of all projectiles.

All right, well, why don't we do a little experiment to show the effect that air can have? This is a surprising experiment that we've set up here. First of all, I'll show you what happens to a tennis ball when it rolls down this inclined ramp. Well, that falls exactly like I would expect—basically a parabolic path as predicted.

But let's try something a little bit lighter, such as this paper cylinder. Okay, it weighs only a gram or so. The effect of the air will be more important. Watch what happens this time.

Okay, wow! So the paper cylinder goes backwards. That doesn't make any sense! I mean, it was rolling forwards off that ramp.

No, it does it every time, and it's because of an effect known as the Magnus Force that's acting on the spinning cylinder. It acts on a spinning ball as well, and people who play sports know about it, but they wouldn't call it a Magnus Force.

Why is it called the Magnus Force? Because Magnus was the first guy who discovered it when he was investigating why cannonballs curve as they propagate through the air.

Aha! So what did he find out? What he found is that when a ball or any object is spinning like this, there's a force perpendicular to the spin axis. If it's spinning clockwise or has Top Spin, the force is down. If it's spinning anticlockwise (counterclockwise), the force is up.

So how do we get a Magnus force on a ball? As the ball's moving forward through the air, if it's spinning, the air is flowing around the ball from the front to the back. The ball is spinning in the same direction as the airflow at the top of the ball but in the opposite direction at the bottom. Because of friction between the air and the ball surface, air is dragged around the top of the ball downwards towards the back.

But at the bottom of the ball, the air flow and the ball are opposite directions. The air comes to a screeching halt fairly soon. Instead of being deflected upwards, the net result is air is deflected downwards. Due to Newton's third law, the air exerts an equal and opposite force on the ball, which is upwards.

So how would sports players take advantage of the Magnus Force? They make the ball curve through the air by a different amount than that due to gravity alone. A golfer will strike a golf ball with backspin that exerts a vertical force, a lift force on the ball, that keeps it in the air for a longer time, and therefore it travels further.

A tennis player will hit the ball with Top Spin that causes the ball to curve down onto the court after it clears the net. A baseball or cricket player will also do that, but in addition, they can make a ball curve about a vertical axis, in which case the ball will either curve to the left or to the right away from the batter, making it much more difficult to hit the ball. That's the object of the exercise.

I see. So are there any other air effects that we need to be aware of?

There's quite a few, actually. There's the buoyant force acting on a balloon, for example, or any object. There's a drag force acting backwards that slows the ball down, and if the ball happens to have seams, then there's a sod force acting on the ball.

Uh-huh! Well, that sounds like a whole other episode—balls with seams!

Yeah, that is. All right, well, stay tuned if you want to find out how air affects balls with seams!

More Articles

View All
Armies of the Future | StarTalk
[Music] Rise of the robots. I. This is a story that’s never ending, heavily treated in science fiction platforms. Uh, for all, for in all frontiers: servant robots, military robots, sex robots. And maybe that’s inevitable, given the direction technolog…
Office Hours with Kevin & Qasar
All right, hi everyone, my name is Kevin Hail. I’m a partner at Y Combinator. Um, I went through YC myself back in 2006. I co-founded a company called WFU Online Form Builder. Um, ran that company for about 5 years and it was acquired by SurveyMonkey back…
How Many Holes Does a Human Have?
[Music] Hey, Vsauce. Michael here. Come on in! If you keep going, you will eventually emerge out my other end. For this reason, it has been said that the human body is like a doughnut. Yeah, you are just a bunch of meat packed around a central Hulk. Or a…
How can a text have two or more main ideas? | Reading | Khan Academy
Hello readers. Today, I want to begin with a brief aside about physics. Unless you’re like a quantum particle or something, it’s not possible to be in two places at once. Nor is it possible to travel in two directions at once. Right? If I’m on a train fro…
15 Ways to Increase Your Income This Year
You need more money because everything’s become extremely expensive. It doesn’t matter if you’re an employee, a freelancer, or a business owner. Here are 15 ways to increase your income this year. First up, brute force. Work more hours if you’re able to …
Creativity break: When did you first realize that you liked algebra | Algebra 1 | Khan Academy
[Music] One day, my family was building this fence around my chicken coop because there were problems with raccoons. We wanted to make sure that the perimeter of the fence was like twice the length of the width. I remember thinking this is exactly like m…