yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

What Is The Magnus Force?


3m read
·Nov 10, 2024

[Applause] So I'm back at the University of Sydney with Rod Cross. Hi Derek! And today we're talking about the effects of air on projectiles.

We normally neglect these effects when I'm teaching students about projectiles. I tell them, "Forget about the air. Let's just talk about gravity," because it simplifies the problem. But air is real; it's heavy stuff, and it affects the flight of all projectiles.

All right, well, why don't we do a little experiment to show the effect that air can have? This is a surprising experiment that we've set up here. First of all, I'll show you what happens to a tennis ball when it rolls down this inclined ramp. Well, that falls exactly like I would expect—basically a parabolic path as predicted.

But let's try something a little bit lighter, such as this paper cylinder. Okay, it weighs only a gram or so. The effect of the air will be more important. Watch what happens this time.

Okay, wow! So the paper cylinder goes backwards. That doesn't make any sense! I mean, it was rolling forwards off that ramp.

No, it does it every time, and it's because of an effect known as the Magnus Force that's acting on the spinning cylinder. It acts on a spinning ball as well, and people who play sports know about it, but they wouldn't call it a Magnus Force.

Why is it called the Magnus Force? Because Magnus was the first guy who discovered it when he was investigating why cannonballs curve as they propagate through the air.

Aha! So what did he find out? What he found is that when a ball or any object is spinning like this, there's a force perpendicular to the spin axis. If it's spinning clockwise or has Top Spin, the force is down. If it's spinning anticlockwise (counterclockwise), the force is up.

So how do we get a Magnus force on a ball? As the ball's moving forward through the air, if it's spinning, the air is flowing around the ball from the front to the back. The ball is spinning in the same direction as the airflow at the top of the ball but in the opposite direction at the bottom. Because of friction between the air and the ball surface, air is dragged around the top of the ball downwards towards the back.

But at the bottom of the ball, the air flow and the ball are opposite directions. The air comes to a screeching halt fairly soon. Instead of being deflected upwards, the net result is air is deflected downwards. Due to Newton's third law, the air exerts an equal and opposite force on the ball, which is upwards.

So how would sports players take advantage of the Magnus Force? They make the ball curve through the air by a different amount than that due to gravity alone. A golfer will strike a golf ball with backspin that exerts a vertical force, a lift force on the ball, that keeps it in the air for a longer time, and therefore it travels further.

A tennis player will hit the ball with Top Spin that causes the ball to curve down onto the court after it clears the net. A baseball or cricket player will also do that, but in addition, they can make a ball curve about a vertical axis, in which case the ball will either curve to the left or to the right away from the batter, making it much more difficult to hit the ball. That's the object of the exercise.

I see. So are there any other air effects that we need to be aware of?

There's quite a few, actually. There's the buoyant force acting on a balloon, for example, or any object. There's a drag force acting backwards that slows the ball down, and if the ball happens to have seams, then there's a sod force acting on the ball.

Uh-huh! Well, that sounds like a whole other episode—balls with seams!

Yeah, that is. All right, well, stay tuned if you want to find out how air affects balls with seams!

More Articles

View All
Analyzing structure with linear inequalities: balls | High School Math | Khan Academy
A bag has more green balls than blue balls, and there is at least one blue ball. Let B represent the number of blue balls, and let G represent the number of green balls. Let’s compare the expressions 2B and B + G. Which statement is correct? So, they mak…
The Flow State: How to Supercharge Your Life
In 1993, Michael Jordan led the Chicago Bulls to victory over the Phoenix Suns in what is widely known as his greatest NBA Finals ever. He averaged 41 points per game, the highest ever in NBA Finals history, cementing his place as one of the greatest, if …
Big Brother is Watching
The voice came from an oblong metal plaque, like a dulled mirror, which formed part of the surface of the right-hand wall. The instrument, the Tila Screen, it was called, could be dimmed, but there was no way of shutting it off completely. The telescreen …
Born 4 Months Early, This Tiny Survivor Beats the Odds | Short Film Showcase
I just always had this image of this daughter that I would have someday: kind of a dirty-faced, tree-climbing little girl. 24 weeks is considered viability outside the womb. To support at 23 weeks and six days, three white, 16 for the girls. Yeah, yeah, …
Vertical asymptote of natural log | Limits | Differential Calculus | Khan Academy
Right over here, we’ve defined y as a function of x, where y is equal to the natural log of x - 3. What I encourage you to do right now is to pause this video and think about for what x values this function is actually defined. Or another way of thinking …
Homeroom with Sal & María Elena Salinas - Thursday, August 13
Hello, Sal here from Khan Academy. Welcome to our homeroom live stream! We have a very exciting guest today. Uh, but before we jump into that conversation, I will give my standard reminders to folks. One, uh, just a reminder that we are a not-for-profit …