yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

What Is The Magnus Force?


3m read
·Nov 10, 2024

[Applause] So I'm back at the University of Sydney with Rod Cross. Hi Derek! And today we're talking about the effects of air on projectiles.

We normally neglect these effects when I'm teaching students about projectiles. I tell them, "Forget about the air. Let's just talk about gravity," because it simplifies the problem. But air is real; it's heavy stuff, and it affects the flight of all projectiles.

All right, well, why don't we do a little experiment to show the effect that air can have? This is a surprising experiment that we've set up here. First of all, I'll show you what happens to a tennis ball when it rolls down this inclined ramp. Well, that falls exactly like I would expect—basically a parabolic path as predicted.

But let's try something a little bit lighter, such as this paper cylinder. Okay, it weighs only a gram or so. The effect of the air will be more important. Watch what happens this time.

Okay, wow! So the paper cylinder goes backwards. That doesn't make any sense! I mean, it was rolling forwards off that ramp.

No, it does it every time, and it's because of an effect known as the Magnus Force that's acting on the spinning cylinder. It acts on a spinning ball as well, and people who play sports know about it, but they wouldn't call it a Magnus Force.

Why is it called the Magnus Force? Because Magnus was the first guy who discovered it when he was investigating why cannonballs curve as they propagate through the air.

Aha! So what did he find out? What he found is that when a ball or any object is spinning like this, there's a force perpendicular to the spin axis. If it's spinning clockwise or has Top Spin, the force is down. If it's spinning anticlockwise (counterclockwise), the force is up.

So how do we get a Magnus force on a ball? As the ball's moving forward through the air, if it's spinning, the air is flowing around the ball from the front to the back. The ball is spinning in the same direction as the airflow at the top of the ball but in the opposite direction at the bottom. Because of friction between the air and the ball surface, air is dragged around the top of the ball downwards towards the back.

But at the bottom of the ball, the air flow and the ball are opposite directions. The air comes to a screeching halt fairly soon. Instead of being deflected upwards, the net result is air is deflected downwards. Due to Newton's third law, the air exerts an equal and opposite force on the ball, which is upwards.

So how would sports players take advantage of the Magnus Force? They make the ball curve through the air by a different amount than that due to gravity alone. A golfer will strike a golf ball with backspin that exerts a vertical force, a lift force on the ball, that keeps it in the air for a longer time, and therefore it travels further.

A tennis player will hit the ball with Top Spin that causes the ball to curve down onto the court after it clears the net. A baseball or cricket player will also do that, but in addition, they can make a ball curve about a vertical axis, in which case the ball will either curve to the left or to the right away from the batter, making it much more difficult to hit the ball. That's the object of the exercise.

I see. So are there any other air effects that we need to be aware of?

There's quite a few, actually. There's the buoyant force acting on a balloon, for example, or any object. There's a drag force acting backwards that slows the ball down, and if the ball happens to have seams, then there's a sod force acting on the ball.

Uh-huh! Well, that sounds like a whole other episode—balls with seams!

Yeah, that is. All right, well, stay tuned if you want to find out how air affects balls with seams!

More Articles

View All
How Old Is The Earth?
I’m in New Zealand’s beautiful Milford Sound, which is actually not a sound but a fjord. So one question you might ask is, what is a fjord? Well, the answer is it’s a giant channel carved out of the rock, and it was carved by glaciers—so ice moving down t…
Financial Institutions Need To Solve This Problem! | Andrew Rossow
And these CEOs probably don’t have as much innovation in their behemoth organizations as a young entrepreneur sitting in the basement typing out code and solving problems to make DeFi faster, smarter. I think we’re going to see a lot of change, a lot of d…
Phrases and clauses | Syntax | Khan Academy
Hello Garans, hello Rosie, hello David. So, okay, so you know the Schoolhouse Rock song, uh, “Conjunction Junction,” right? Classic, classic. Uh, so in that song, you know, the chorus asks, like, “Conjunction Junction, what’s your function?” And then thi…
Change in supply versus change in quantity supplied | AP Macroeconomics | Khan Academy
We’re going to continue our discussion on the law of supply, and in particular, in this video, we’re going to get a little bit deeper to make sure we understand the difference between a change in supply. I’m just using the Greek letter delta here for shor…
Hunted in the Arctic | Edge of the Unknown on Disney+
I was 8 and my brother was about 10. We really wanted to go camping without any adults. My parents agreed as long as we trained. We were living in the Arctic, so it was cold temperatures and storms and blizzards and bears. But we wanted them to succeed in…
Catch of the Week - Wicked End | Wicked Tuna: Outer Banks
[Music] Here they are, 15 down to 25. We’re marking. I’m not going to rest easy until we’re ahead of Reel of Fortune. Come on, give me the go here in a [Music] second. We’re on, we’re on! Woohoo, there he goes! Double header! Watch that other rod! Hurry u…