yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Introduction to vector components | Vectors | Precalculus | Khan Academy


4m read
·Nov 10, 2024

In other videos, we have talked about how a vector can be completely defined by a magnitude and a direction. You need both. Here we have done that; we have said that the magnitude of vector A is equal to three units. These parallel lines here on both sides look like a double absolute value. That means the magnitude of vector A. You could also specify that visually by making sure that the length of this vector arrow is 3 units long.

We also have its direction. We see the direction of vector A is 30 degrees counterclockwise of due east. Now, in this video, we're going to talk about other ways, or another way, to specify or to define a vector, and that's by using components. The way that we're going to do it is we're going to think about the tail of this vector and the head of this vector, and think about, as we go from the tail to the head, what is our change in x?

We could see our change in x would be that right over there. We're going from this x value to this x value. And then what is going to be our change in y? If we're going from down here to up here, our change in y we can also specify like that. So, let me label these. This is my change in x, and then this is my change in y.

If you think about it, if someone told you your change in x and change in y, you could reconstruct this vector right over here by starting here, having that change in x, then having the change in y, and then defining where the tip of the vector would be relative to the tail. The notation for this is we would say that vector A is equal to, and we'll have parentheses, and we'll have our change in x comma change in y.

So if we wanted to get tangible for this particular vector right over here, we know the length of this vector is 3; its magnitude is 3. We know that this is going due horizontally, and then this is going straight up and down. This is a right triangle, and so we can use a little bit of geometry from the past.

Don't worry if you need a little bit of a refresher on this, but we could use a little bit of geometry or a little bit of trigonometry to establish if we know this angle. If we know the length of this hypotenuse, that this side that's opposite the 30-degree angle is going to be half the hypotenuse, so it's going to be three halves; and that the change in x is going to be the square root of 3 times the 3 halves, so it's going to be 3 square roots of 3 over 2.

Up here, we would write our x component is 3 times the square root of 3 over 2, and we would write that the y component is 3 halves. Now, I know a lot of you might be thinking this looks a lot like coordinates in the coordinate plane, where this would be the x coordinate and this would be the y coordinate. But when you're dealing with vectors, that's not exactly the interpretation.

It is the case that if the vector's tail were at the origin right over here, then its head would be at these coordinates on the coordinate plane. But we know that a vector is not defined by its position, by the position of the tail. I could shift this vector around wherever, and it would still be the same vector; it can start wherever. So when you use this notation in a vector context, these aren't x coordinates and y coordinates; this is our change in x, and this is our change in y.

Let me do one more example to show that we can actually go the other way. So let's say I defined some vector B, and let's say that its x component is the square root of 2, and let's say that its y component is the square root of 2. So, let's think about what that vector would look like.

So, if this is its tail, and its x component, which is its change in x, is square root of 2, it might look something like this. So that would be change in x is equal to square root of 2, and then its y component would also be square root of 2, so I could write our change in y over here as square root of 2.

The vector would look something like this; it would start here, and then it would go over here. We can use a little bit of geometry to figure out the magnitude and the direction of this vector. You can use the Pythagorean theorem to establish that this squared plus this square is going to be equal to that squared, and if you do that, you're going to get this having a length of 2, which tells you that the magnitude of vector B is equal to 2.

If you wanted to figure out this angle right over here, you could do a little bit of trigonometry or even a little bit of geometry, recognizing that this is going to be a right angle right over here, and that this side and that side have the same length. So these are going to be the same angles, which are going to be 45-degree angles.

Just like that, you could also specify the direction as 45 degrees counterclockwise of due east. So hopefully, you appreciate that these are equivalent ways of representing a vector. You either can have a magnitude in a direction, or you can have your components, and you can go back and forth between the two. We'll get more practice of that in future videos.

More Articles

View All
Senate checks on presidential appointments | US government and civics | Khan Academy
Presidents of the United States have many powers, but perhaps one of the most influential of these powers is the power of appointment. They can, of course, appoint members of their cabinet. They can appoint ambassadors, and they can appoint judges. We cou…
Can you solve the sorting hat riddle? - Dan Katz and Alex Rosenthal
An albatross delivered your invitation. You’ve acquired your wand, ridden the enchanted zeppelin, made some fast friends, and are finally ready for the adventure you’ve dreamed of your entire life: your first day at Magnificent Marigold’s Magical Macademy…
Finding average rate of change of polynomials | Algebra 2 | Khan Academy
We are asked what is the average rate of change of the function f, and this function is f. Up here is the definition of it over the interval from negative two to three, and it’s a closed interval because they put these brackets around it instead of parent…
Full Senate Roundtable Speech
Thank you very much, Senator, and it is a pleasure and an honor to be here. I’m speaking today as a clinical research scientist. This is an endeavor with which I have some familiarity because I’ve conducted many such studies, and I’m aware of their diffic…
Science, technology, and the environment | High school biology | Khan Academy
So I really liked a snack, and one of my most favorite snacks of all time happens to be bananas. I mean, you can have them in a smoothie, with some peanut butter, on some toast—in any way, really. Usually, like most people, I just throw away the peels aft…
Lion Rapid Response Team | Best Job Ever
[Music] I’m a first responder for lions in Gorong Goa National Park. Every day, we’re out there working with lions. Very slowly, let’s just see what she’s up to. Gorong Goa National Park is undergoing a remarkable recovery after two decades of civil war,…