yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Proof: perpendicular radius bisects chord


2m read
·Nov 10, 2024

So we have this circle called circle O based on the point at its center, and we have the segment OD, and we're told that segment OD is a radius of circle O. Fair enough! We're also told that segment OD is perpendicular to this chord, to chord AC, or to segment AC.

What we want to prove is that segment OD bisects AC. So another way to think about it is that it intersects AC at AC's midpoint.

Pause this video and see if you can have a go at that.

All right! Now let's go through this together, and the way that I'm going to do this is by establishing two congruent triangles. Let me draw these triangles. So I'm going to draw one radius going from O to C and another from A to O.

Now we know that the length AO is equal to OC because AO and OC are both radii in a circle. The length of the radius does not change, so I can put that right over there.

And then we also know that OM is going to be congruent to itself. It's a side in both of these triangles, so let me just write it this way: OM is going to be congruent to OM. This is reflexivity. Reflex, kind of obvious. It's going to be equal to itself—it's going to be congruent to itself.

So you have it just like that! And now we have two right triangles.

How do I know they're right triangles? Well, they told us that segment OD is perpendicular to segment AC and our assumptions in our given. If you just had two triangles that had two pairs of congruent sides, that is not enough to establish congruency of the triangles.

But if you're dealing with two right triangles, then it is enough!

And there's two ways to think about it. We had thought about the RSH postulate where if you have a right triangle and, or two right triangles, you have a pair of sides are congruent and the hypotenuses are congruent, that means that the two triangles are congruent.

But another way to think about it, which is a little bit of common sense, is using the Pythagorean theorem. If you know two sides of a right triangle, the Pythagorean theorem would tell us that you could determine what the other side is.

And so what we could say is—and let's just use RSH for now—but you could also say we can use the Pythagorean theorem to establish that AM is going to be congruent to MC.

But let me just write it this way: I will write that triangle AMO is congruent to triangle CMO by RSH.

And if the triangles are congruent, then the corresponding sides must be congruent. So therefore we know that AM—segment AM—is going to be, I'm having trouble writing, congruent to segment CM.

That these are going to have the same measure! And if they have the same measure, we have just shown that M is the midpoint of AC or that OD bisects AC.

So let me just write it that way: therefore, OD bisects AC. Segment OD bisects segment AC, and we're done!

More Articles

View All
What are some things you’ve had to unlearn?
You’d be surprised at how many Founders that we talked to will tell you that nothing they did in their job translates at all to their startup. It’s because you have so much infrastructure inside of Google or Facebook to do your job, and they have their ow…
Subject and object pronouns | The parts of speech | Grammar | Khan Academy
All right, so grammarians, I want to talk to you about the difference between subject and object pronouns. But before we do that, let’s start off with a little primer on what subjects and objects actually are—um, just generally, for our grammatical purpos…
How to make INSTANT PROFIT with Real Estate
What’s up you guys? It’s Graham here. So, I understand this sounds like a very intense claim to say that you can make money immediately in real estate, especially when on this channel I preach investing in real estate is a very long-term plan. But there i…
WHAT IS THIS LINE? (on my Super Blue Blood Moon Photo) - Smarter Every Day 188
Hey, it’s me Destin. Welcome back to Smarter Every Day. Super. Blue. Blood. Moon. I heard those words and I was like, “Mmhmm, that’s my life now.” So, here’s the deal. “Supermoon” refers to the fact that the Moon goes around the Earth in an ellipse. When …
The importance of networking.
This is the day in the life of a jet broker. I flew out to Switzerland for eBay. For anyone who loves jets, eBay is like being a kid in the candy store. It’s where you’ll find the latest and greatest in jet innovations while providing unparalleled network…
How Warren Buffett Made His First $1 Million
So, in this video, we’re going to talk about how Warren Buffett made his first million dollars and what you can learn from it to make yours. Warren Buffett is currently worth $100 billion and built a company that is worth $650 billion. If you’re watching …