yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Proof: perpendicular radius bisects chord


2m read
·Nov 10, 2024

So we have this circle called circle O based on the point at its center, and we have the segment OD, and we're told that segment OD is a radius of circle O. Fair enough! We're also told that segment OD is perpendicular to this chord, to chord AC, or to segment AC.

What we want to prove is that segment OD bisects AC. So another way to think about it is that it intersects AC at AC's midpoint.

Pause this video and see if you can have a go at that.

All right! Now let's go through this together, and the way that I'm going to do this is by establishing two congruent triangles. Let me draw these triangles. So I'm going to draw one radius going from O to C and another from A to O.

Now we know that the length AO is equal to OC because AO and OC are both radii in a circle. The length of the radius does not change, so I can put that right over there.

And then we also know that OM is going to be congruent to itself. It's a side in both of these triangles, so let me just write it this way: OM is going to be congruent to OM. This is reflexivity. Reflex, kind of obvious. It's going to be equal to itself—it's going to be congruent to itself.

So you have it just like that! And now we have two right triangles.

How do I know they're right triangles? Well, they told us that segment OD is perpendicular to segment AC and our assumptions in our given. If you just had two triangles that had two pairs of congruent sides, that is not enough to establish congruency of the triangles.

But if you're dealing with two right triangles, then it is enough!

And there's two ways to think about it. We had thought about the RSH postulate where if you have a right triangle and, or two right triangles, you have a pair of sides are congruent and the hypotenuses are congruent, that means that the two triangles are congruent.

But another way to think about it, which is a little bit of common sense, is using the Pythagorean theorem. If you know two sides of a right triangle, the Pythagorean theorem would tell us that you could determine what the other side is.

And so what we could say is—and let's just use RSH for now—but you could also say we can use the Pythagorean theorem to establish that AM is going to be congruent to MC.

But let me just write it this way: I will write that triangle AMO is congruent to triangle CMO by RSH.

And if the triangles are congruent, then the corresponding sides must be congruent. So therefore we know that AM—segment AM—is going to be, I'm having trouble writing, congruent to segment CM.

That these are going to have the same measure! And if they have the same measure, we have just shown that M is the midpoint of AC or that OD bisects AC.

So let me just write it that way: therefore, OD bisects AC. Segment OD bisects segment AC, and we're done!

More Articles

View All
The Seventh Amendment | US government and civics | Khan Academy
Hi, this is Kim from Khan Academy. Today, we’re learning more about the Seventh Amendment to the U.S. Constitution. The Seventh Amendment guarantees the right to juries in civil cases when the value in controversy is greater than twenty dollars. To learn…
Why Earth Is A Prison and How To Escape It
We are prisoners on Earth. The Universe taunts us by showing all the places we can’t ever visit. However, if our species wants to have a long-term future, we have to escape our prison. But what is keeping us here in the first place? Turns out, we owe the …
My Response To iDubbbzTV | The Full Story
I got really anxious one month because I was like I spent like 800 on ubereats this month. I was like that’s bad. [Music] What’s up guys, it’s Graham here, and I’m not gonna lie, today is one of those moments where I have to sit down and pinch myself to …
Differentiating using multiple rules: strategy | AP Calculus AB | Khan Academy
So I have two different expressions here that I want to take the derivative of, and what I want you to do is pause the video and think about how you would first approach taking the derivative of this expression and how that might be the same or different …
Cooling down water by BOILING it
Let’s cool down some water by boiling it. The water in this beaker is hot, but it’s not boiling because the molecules in the beaker don’t have enough kinetic energy right now to rapidly fight against the air pressure from the outside that’s squeezing them…
Graphing square and cube root functions | Algebra 2 | Khan academy
We’re told the graph of ( y ) is equal to (\sqrt{x}) is shown below. Fair enough, which of the following is the graph of ( y ) is equal to ( 2\times\sqrt{-x}-1 )? They give us some choices here, and so I encourage you to pause this video and try to figure…