yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Graphing arithmetic sequences | Algebra I (TX TEKS) | Khan Academy


3m read
·Nov 10, 2024

We are told that F of n is equal to F of n minus 1 plus 6. So, the value of this function for each term n is defined in terms of the value of the function for previous terms. We're essentially adding six to the previous term for each whole number n, where n is greater than one, and F of one is equal to 8.

Whenever you define something recursively like this, where you're defining it in terms of a previous term, you have to set up an initial point that you can start with. And we'll see in a second why that's important. Now, what I want you to do is pause this video, and based on this definition, figure out what the value of the function is for n equal 1, 2, 3, and 4, and then we're going to graph that and we're going to discuss that graph.

All right, now let's work through this together. So, let me in this column let we have n, and here I will have F of n. So, we'll start with n equals 1. That's pretty straightforward; they tell us that F of one is equal to 8. That was pretty straightforward. Now, let's go to when n equals 2. Well, F of two is equal to F of 2 minus 1, so it's equal to F of 1 plus 6.

Well, we know that F of one we just figured out is 8, so it's equal to 8 plus 6, which is equal to 14. Let's keep going, maybe in purple. All right, so now we want to figure out what F of 3 is going to be equal to. Well, same idea; it's going to be equal to F of 3 minus one or F of 2 plus 6. We keep adding six every time.

So, F of two we just figured out is 14. This is strangely fun! 14 plus 6, that is equal to 20. And then last but not least, maybe in light blue when n equals 4. Well, let's figure out F of four; it's going to be equal to F of three plus 6, which is equal to 20. F of 3 is 20 plus 6, which is equal to 26.

So, you might have noticed a pattern here. We start with when on our first term the value of the function is 8, and then what did we do? We added six. And then to get to the next term, we added six again, and then we added six again. And so, we should see that visually when we actually try to graph it.

So, let's graph it here, and actually instead of calling this the x-axis, let me call this the N axis, and the Y axis, let's just call that Y is equal to F of N. So, let's take that first point when n equals 1; the value of our function is 8. It gets you right about there. Then when n is 2, we get to 14. 2, 14, right about there.

When n is 3, we get to 20, so that is there. And then, last but not least, when n is 4, we get to 26. 26 gets us right about there. So, you might notice something very interesting here; it looks like these dots are on a line.

Now, this isn't a line because we're only defining this for whole number n's, but we can see it looks like a line. And every time we move forward by one, we are moving up by six. We move forward by one, we're moving up by six.

So, if this were a line, if I were to try to connect these dots with a line, that line would have a slope of six because our change in N is one, and then our change in y or change in the value of our function is going to be six every time.

So, in general, if someone shows you a sequence like this, and this is really an arithmetic sequence where each term is a previous term plus or minus some fixed amount, you're going to see something that looks linear. If you saw a curve, then that wouldn't, or something like dots on a curve; then that wouldn't be an arithmetic sequence. That would be something else. But if you see dots that seem to form or be points on a line, that's a pretty good clue that you're dealing with an arithmetic sequence.

More Articles

View All
Watch: Putting a Camera on a Whale Shark | Expedition Raw
I’m out here putting Critter cams on whale sharks and hope to better understand their behavior along the reef. We spot a shark; it was coming up to the boat and actually very curious. I didn’t really realize where the shark was. As soon as I jumped in the…
Homeroom with Sal & Jonathan Haidt - Wednesday, July 1
Hi everyone! Welcome to our daily homeroom livestream. For those of you who are wondering what this is, this is something we started a few months ago. It’s really just a way to stay connected, have interesting conversations about education and other topic…
Introduction to verb tense | The parts of speech | Grammar | Khan Academy
Hello grammarians! Today, I want to introduce the idea of the verb tense. The way I want to do that is to express the following: if you can master grammatical tenses, you will become a time wizard—a literal, actual time wizard. Because tense is nothing mo…
Distillation curves | Intermolecular forces and properties | AP Chemistry | Khan Academy
[Instructor] In this video, we’re gonna dig a little bit deeper into distillation, and in particular, we’re gonna learn how to construct and interpret distillation curves. So let’s say we’re trying to distill roughly 50 milliliters. That is 50% methyl a…
Vertices & direction of a hyperbola | Precalculus | High School Math | Khan Academy
Which of the following graphs can represent the hyperbola ( \frac{y^2}{9} - \frac{x^2}{4} = 1 )? We have our four choices here. Choices A and C open up to the top and the bottom, or up and down. Choices B and D, you can see, D here opens to the left and …
BEST IMAGES OF THE WEEK: IMG! episode 4
A family photo that’s not at all creepy, except for that guy. Super Mario Brothers turns 25 years old today. It’s Episode Four of IMG. Today, Kotaku brought us the 10 most bizarre iPad mods: a USB typewriter, an iPad arcade, and even an iPad skateboard. …