yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Vertices & direction of a hyperbola | Precalculus | High School Math | Khan Academy


3m read
·Nov 11, 2024

Which of the following graphs can represent the hyperbola ( \frac{y^2}{9} - \frac{x^2}{4} = 1 )?

We have our four choices here. Choices A and C open up to the top and the bottom, or up and down. Choices B and D, you can see, D here opens to the left and the right. In the ones that open up to the left and right, or up and down, they have different vertices. So, I encourage you to pause the video and see if you can figure out which of the following graphs represent the equation of a hyperbola or the graphs of this equation right over here.

All right, so there's a bunch of ways to think about it. One thing you might say is, what's the center of this hyperbola? Since in our equation, we just have a simple ( y^2 ) or a simple ( x^2 ), we know that the center is going to be at ( (0, 0) ). If the center was anywhere else, if the center was at the point ( (h, k) ), then this equation would be ( \frac{(y - k)^2}{9} - \frac{(x - h)^2}{4} = 1 ).

In this case, this is just the case where ( k ) and ( h ) are both equal to 0. So we just get, you could view this as ( (y - 0)^2 ) and ( (x - 0)^2 ). So the center in this case is going to be at ( (0, 0) ), and you see that for all of them.

Now, the next question you might ask is, well, is this going to be opening up and down, or is it going to be opening left and right? The key thing to realize is, you just need to look at whichever term, when it's written in standard form like this. When you have ( \frac{(y - k)^2}{something^2} - \frac{(x - h)^2}{something^2} = 1 ) or it could be the other way around. The ( x ) term might be positive and then the ( y ) term would be negative if we're dealing with a hyperbola.

So the key is to just look at whichever term is positive. That will tell you which direction the hyperbola opens in. Since the ( y ) term here is the one that is positive, it tells us that this hyperbola is going to open up and down. Now, you could just memorize that, but that's never too satisfying. I always want to know, why does that work?

The key thing to realize is, if the ( y ) term is positive, then you could set the other term equal to zero. The way that you would set the other term equal to zero, in this case, is by making your ( x ) equal to the ( x ) coordinate of your center, and that's 0. So, if ( x ) is equal to the ( x ) coordinate of your center, and this term becomes 0, you can actually solve this equation.

You can solve ( \frac{y^2}{9} = 1 ). So if ( x ) is equal to 0, the ( x ) coordinate of its center, then this term goes away, and you would get ( \frac{y^2}{9} = 1 ) or ( y^2 = 9 ) or ( y = \pm 3 ).

So, you know that the coordinates ( (0, \pm 3) ) are on the hyperbola. And so you know that's going to open upwards and downwards. You go to the center; the ( x ) coordinate of the center plus 3 and minus 3 are on the hyperbola. Notice over here ( (0, \pm 3) ) are not on this hyperbola. In fact, if ( \pm 3 ) were on this hyperbola, you wouldn't be able to open up to the right and the left.

That's why whichever term is positive, that is the direction that you open up or down with. If the ( x ) term was positive, we would be opening to the left and the right for the exact same reason. You could see, if we did the other way around, if we had the ( y ) equaling the ( y ) coordinate of the center.

So this term, if the ( y ) term was zeroed out, you would end up with ( -\frac{x^2}{4} = 1 ), which is the same thing as ( \frac{x^2}{4} = -1 ), which is equal to ( x^2 = -4 ). I just multiplied both sides by -1 there, and then I multiplied both sides by 4. This has no solution, and so that's why we know that we're not going to intercept the line.

We're never going to have a situation where ( y ) is equal to the ( y )-coordinate of the center. So that's what, so ( y ) is never going to be equal to 0 in this case, in cases B and D, why there are points where ( y = 0 ).

So the thing to realize is, whichever term is positive, that and whatever variable that is—so if it's for the ( y ) variable, that's the direction that we're going to open up in. When I figured out what the actual vertices are, we saw that the point ( (0, \pm 3) ) are on the graph.

So A looks like a really good candidate. If we look at the other choice that opens up and down, it doesn't have ( (0, \pm 3) ) on the graph; it has ( (0, \pm 2) ). So we can feel pretty good about choice A.

More Articles

View All
Every Lie You Believe In
Tim Cook of Apple, Sundar Pichai of Google, Elon Musk, Jeff Bezos, the president of the United States—when you think of the people controlling the world, these names come to mind. But the truth is, while these people have a significant influence over our …
How 3D Printing Can Preserve History - Tech+Art | Genius: Picasso
The genius is a word that gets used so much more feminine. I’ve always found that word very problematic. I’m here to change that. Here we are. I was doing a lot of 3D animation and 3D modeling, but just like seeing something that you modeled in a virtual …
2015 AP Calculus BC 5b | AP Calculus BC solved exams | AP Calculus BC | Khan Academy
Let k equal four so that f of x is equal to one over x squared minus four x. Determine whether f has a relative minimum, a relative maximum, or neither at x equals two. Justify your answer. All right, well, if f of x is equal to this, then f prime of x. …
The Cognitive Tradeoff Hypothesis
This is Inuyama, Japan, a historic city home to Japan’s oldest original wooden castle. It is also home to Kyoto University’s Primate Research Institute. Here, a group of chimpanzees have been trained to play a game that exposes something shocking about th…
A Dark Web Narcotics Seizure | To Catch a Smuggler
Right now, we’ve been seeing a huge increase from people ordering stuff off of the dark web. CUSTOMS OFFICER 1: The dark web is a criminal flea market anyone with the internet can access. There was a big website back in the day, Silk Road. My understandi…
Nuclear fission | Physics | Khan Academy
An atomic bomb and a nuclear power plant work on the same basic principle: nuclear fusion chain reactions. But what exactly is this? More importantly, if the same thing is happening inside both a bomb and a nuclear reactor, then why doesn’t the nuclear re…