yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Modeling ticket fines with exponential function | Algebra II | Khan Academy


3m read
·Nov 11, 2024

Sarah Swift got a speeding ticket on her way home from work. If she pays her fine now, there will be no added penalty. If she delays her payment, then a penalty will be assessed for the number of months t that she delays paying her fine. Her total fine f in euros is indicated in the table below.

These numbers represent an exponential function, so they give us the number of months that the payment is delayed and then the amount of the fine. This is essentially data points from an exponential function.

Just to remind ourselves what an exponential function would look like: this tells us that our fine, as a function of the months delayed, is going to be equal to some number times some common ratio to the t power.

This exponential function is essentially telling us that our function is going to have this form right over here. So, let's see if we can answer their questions.

The first question is: what is the common ratio of consecutive values of f? The reason why r, right over here, is called the common ratio is that it's the ratio that, if you look at any two values, say if you were to increment t by one, the ratio of that to f of t should be consistent for any t.

Let me give you an example here: the ratio of f of 2 to f of 1 should be equal to the ratio of f of 3 to f of 2, which should be the same as the ratio of f of 4 to f of 3 or, in general terms, the ratio of f of t plus 1 to f of t should be equal to all of these things. That would be the common ratio.

So, let's see what that is. If we just look at the form, what's the ratio of f of 2 to f of 1? 450 divided by 300, well that's 1.5. That's 1.5. 675 divided by 450, that's 1.5. 1012 divided by 675, that's 1.5. So, the common ratio in all of these situations is 1.5.

So, the common ratio over here is 1.5. Just to make it clear why this r, right over here, is called the common ratio, let's just do this general form.

So, f of t plus 1, well that's just going to be a times r to the t plus 1 power, and f of t is a times r to the t power. So what is this going to be? This is going to be, let's see, this is going to be r to the t plus 1 minus t, which is just going to be equal to r to the first power, which is just equal to r.

So this term, this variable r, is going to be equal to this common ratio. When we figured out that the common ratio is 1.5, that tells us that our function is going to be of the form: f of t is equal to a times instead of writing an r there, we now know that r is 1.5 to the t power.

Now let's write a formula for this function. Well, we've almost done that, but we haven't figured out what a is. To figure out what a is, we could just substitute. We know what f of 1 is; when t is equal to 1, f is equal to 300. So we should be able to use that information to solve for a.

We could have used any of these data points to solve for a, but let's do that. f of 1 is equal to a times 1.5 to the first power, or a times 1.5, and that is going to be equal to… they tell us that f of 1 is equal to 300.

Another way of writing this is: we could say 1.5 times a is equal to 300. Divide both sides by 1.5, and we get a is equal to 200. Therefore, our formula for our function is going to be 200 times 1.5 to the t power.

Now, what is the fine in euros for Sarah's speeding ticket if she pays it on time? Paying it on time implies that t is equal to zero, or another way of thinking about it, we need to figure out her fine for t equals zero, so we need to figure out f of zero.

So what's f of zero? It’s 200 times 1.5 to the zero power. 1.5 to the zero power is one, so that’s just going to be equal to 200 euros.

Now, another way of thinking about it is: look, let's look at the common ratio. To go from 675 to 450, you're essentially dividing by the common ratio. To go from 450 to 300, you are dividing by the common ratio.

So then, to go from t equals one to t equals zero, you would divide by the common ratio again and you would get 200. Or another way of thinking about it is every time we are multiplying by the common ratio.

More Articles

View All
Multiple points of influence due to separation of powers and checks and balances | Khan Academy
In several videos, we have touched on the idea of separation of powers between three branches of government in the United States. You have the legislative branch that writes laws and decides on the budget for the government. You have the executive branch …
Will There Be a Recession in 2024?
We believe there’s a recession coming. The US economy will go into recession by the middle of next year. We’re going to have a significant economic slowdown. There is a Day of Reckoning coming for the US economy. You’ve probably seen enough from the mains…
Kevin Hale - Startup Pricing 101
This was a highly requested talk from last year, or lots of people had questions about pricing or were really confused. It’s actually was well requested both at YC itself—that’s a very, very popular workshop that we run. We’re gonna go over a lot of basi…
how to master your emotions | emotional intelligence
Emotion. It’s sometimes referred to as the spirit or the breath of life. It prescribes our actions and colors our world. The one who can master the emotions can master actions, and the one who masters actions is the master of all future realities. Today …
See Potala Palace, the Iconic Heart of Tibetan Buddhism | National Geographic
The centerpiece of Tibet’s capital Lhasa is the imposing Potala Palace. At 12,000 feet above sea level, it’s the highest palace in the world. It’s also a major center for Buddhist spirituality. Potala refers to a sacred mountain in India, and for centurie…
First Look: The Long Road Home | The Long Road Home
♪♪ KELLY: Memory is a powerful thing. ♪♪ There are some events that stick in the mind… forever defining the difference between before and after, and instantly redefining everything that matters. For the soldiers and families of the Army’s 1st Cavalry Divi…