yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

ELI the ICE man


4m read
·Nov 11, 2024

Okay, it's time to introduce you to a new friend: Eli the Iceman. Eli the Iceman is a friend of every electrical engineer, and what we've been talking about is AC analysis. In AC analysis, we limit ourselves to one type of signal, and that's a sinusoid. The sinusoid we like is called cosine. We say cosine of Omega t plus φ.

Omega represents the radian frequency of the cosine. Here, it's shown in blue that radian frequency is Omega, and φ is the phase delay or the phase shift. If we look here, we see this isn't really a cosine wave because the peak is a little before zero time equals zero. So this distance right here is the lead, the phase lead, and that's φ.

When φ is a positive number, this whole cosine wave is shifted a little bit to the left. That's what we mean by phase shift. When these kinds of signals are input into our favorite components, we're going to get a relationship between the voltage and the current in those components, and that's related by the impedance.

We defined the idea of impedance as the ratio of voltage to current. We gave that the symbol Z. Now, in this video, instead of using v as my variable for voltage, I'm going to use a different letter. I'm going to use e. e is short for EMF or electromotive force, and it's really commonly used almost as often as V for representing voltage. I'll show you why I want to use e in a little bit.

Another way I can write this just as easily is e = ZI, and this looks a lot like Ohm's law. What we're going to find out here is we can apply this; in addition to applying it to resistors, we can apply it to capacitors and inductors. So first off, we're going to look at our friend the inductor, and we're going to look at the equation E = ZI for an inductor.

I'm going to assign I to be a sinusoid, so I is going to be equal to some magnitude; we'll call it I_KN cosine(Ωt + φ). So I'm going to say my current is a cosine wave of this magnitude with this phase delay, and that's shown in blue here. So this here is I. Now let's write e in terms of this I here.

So I can write E = Z. Now, what is Z for an inductor? The impedance of an inductor is JΩL. What is I? I is sitting right here, and I'm going to represent I like this. I'm going to represent I as a phaser or a phaser representation. We said that that could be represented as I, the magnitude of the current, indicated at the angle of φ.

These are equivalent representations of I. This is the time domain representation, and this is the phaser representation. Now what we have out here in front of I is a scaling factor. There's this complex J that we'll take care of in a second, and there's ΩL. So Omega is the frequency, and L is the size of the inductor.

Now, for the purposes of this video, when I plot out the voltage over here in orange, we're going to assume that this scaling factor ΩL is one, just so that we can focus on the timing relationships between the current and the voltage. When we talked about complex numbers, multiplying by J represents a rotation of +90°.

So I can write this as E = (scaling factor) * I_KN, which is the original magnitude of the current, and φ gets changed here. φ changes; φ becomes φ + 90°. This multiplication by J corresponds to adding 90° to φ. So multiplying by J corresponds to a 90° phase shift, and if I draw here, this is now e.

The phase shift, we say this distance right here is φ, and this distance right here is a phase lead of 90°. You'll notice I key off the peaks of these waveforms because that's the easiest place to see the lead. So when I move to the left, that corresponds to a lead of +90°.

So in an inductor, we say that E leads I by 90°. Alright, now let's do it for a capacitor. We'll do the same kind of thing here for a capacitor. We'll assign the same current, we'll say I = I_KN cosine(Ωt + φ). Now let's work out the voltage across the capacitor.

So the voltage across the capacitor e is the same thing we have here, E = Z. Or, I can write e in the capacitor equals Z. Now, what is the impedance of a capacitor? It's 1/(JΩC). That's Z. And I we represent the same way as we did before: I_KN at an angle of φ.

So now, let's carefully do this. This multiplication e = 1/J * (1/(Ω I_KN)) at an angle of φ. So here's this 1/J term. Now, I can rewrite 1/J as -J. Now we're multiplying something by -J, and multiplying by -J corresponds to a rotation of -90°.

So I can write e one more time: e = (1/(ΩC)) * I_KN at an angle of (φ - 90°). This -90° here corresponds to a lag, a phase lag. So here's our original current here; let me label that. Here's I, and now we have our voltage e, looks like this. Here’s e, and what we see...

Let me go out here and measure it. Here we have a phase lag; we're pointing to the right of -90°, and that we call a lag. We can summarize that. We can say in a capacitor that e lags I. An equivalent way to say this is we can say that I leads e; I leads voltage.

So I can actually put boxes around these two results here and here. Now, there's a lot of sign flipping going on here, and there's actually an easy way to remember this. I want to introduce you to someone who can help you remember this, and his name is Eli the Iceman.

So what can Eli tell us? Eli tells us that in an inductor (L), voltage leads current, and over here in a capacitor (C), current leads voltage. That's the message from Eli the Iceman. He helps us remember the order that voltage and current change in inductors and capacitors. He's going to be your friend for a long time.

More Articles

View All
Why is the tech industry in the SF Bay Area?
Is there a specific reason, or was there specific events that occurred which has created this strength or grip that the Bay Area has when it comes to technology? I don’t think it is a path dependent history. In other words, I don’t think that Silicon Vall…
Congress Wants To Ban Credit Scores | Major Changes Ahead
What’s up, Grandma’s guys? Here, so no surprise, your credit score is pretty much the single most influential deciding factor when it comes to all things personal finance, building wealth, and saving a ton of money. Those three numbers pretty much become …
Capturing a Carnivorous Bat on Camera | National Geographic
[Music] When National Geographic asked me to photograph this bat story, I was really excited because it was an opportunity to work with some really interesting scientists, like Rodrigo. I get to work with the species I’ve never seen before. Very little h…
Stuffed GIRL'S HEAD? -- Mind Blow #14
A water-powered jetpack and step right up! Get just stuff, girl! Heads Vsauce! Kevin here. This is my flow. This super Jen and Tory blew everyone away in 2000, made by combining an Atari 2600, Genesis, NES, and Super NES into one sexy package. But let’s …
Homeroom with Sal & John B. King Jr. - Tuesday, August 25
Hi everyone! Welcome to the Homeroom live stream. Very excited about the conversation we’re about to have. But before we jump into that, I’ll make a couple of my standard announcements. First of all, just a reminder that Khan Academy is a not-for-profit …
Probabilities from density curves | Random variables | AP Statistics | Khan Academy
Consider the density curve below. So we have a density curve that describes the probability distribution for a continuous random variable. This random variable can take on values from 1 to 5 and has an equal probability of taking on any of these values fr…