yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

How the Quantum Vacuum Gave Rise to Galaxies


4m read
·Nov 10, 2024

We take it for granted that our universe contains planets, stars, and galaxies because those are the things we see. But the only reason these big structures exist is because of the nature of nothingness - empty space.

But to understand why, we have to go back to the beginning. The very beginning. The big bang. You know, I always thought that in the Big Bang, the observable universe started as a point and then just expanded steadily more or less to the point that we're at today. But that's not actually how it happened. There were four different phases in the universe's expansion.

To start, it was expanding steadily. But then, after just a tiny fraction of a second, the expansion just blew up, and the whole universe increased in size by like ten to the twenty-six times in a very short period of time. That period is known as inflation. Just as abruptly as it began, inflation stopped. After that, the universe continued expanding but at a decreasing rate.

So, the expansion of the universe was actually slowing down, which is exactly what you expect if the universe is full of massive objects that gravitationally attract each other. But then, about five or six billion years ago, the expansion of the universe started speeding up again. This is thought to be caused by dark energy, an energy tied to space.

So before that time, there was enough matter; the matter density was high enough that it was pulling everything back together, slowing down the expansion. But once the universe reached a critical size, well then there was enough dark energy to start pushing things apart. That is the phase that we're still in: the expansion of the universe is accelerating.

Now, this story doesn't really explain the formation of galaxies until you tie in the nature of nothingness. Now, ordinarily we think of everything around us as made of particles, of atoms and electrons. But our best theories of physics are actually field theories that say all these particles should be seen as just excitations in fields.

The word "field" always gets me because it makes me think of... well, fields. But a field is just something that has a value everywhere in space. So every subatomic particle has its own field: an electron field, an up quark field, a down quark field, a neutrino field, and so on. Anywhere there's an excitation in this field, that is some energy in the field. Well, that is where we will observe particles.

Out in completely empty space, where the values for all of these fields are basically zero. But here's the thing: it's impossible to make a field perfectly flat and zero. You cannot take a quantum field and make it completely quiet. It's the Heisenberg uncertainty principle. It says you can't take a particle and pinpoint it to exactly zero energy. Likewise, you can't take a quantum field and make it exactly flat everywhere.

Now, this is important because ordinarily, these fluctuations are really, really tiny, and they only affect subatomic processes. But during that period of inflation, the universe expanded in size so rapidly and so incredibly that those tiny fluctuations got blown up to the scale of the observable universe.

Now, without them, we think the matter distribution in the universe would have been completely homogeneous, completely uniform. That means the gravitational force on any object in the universe would have been the same in all directions. Which means nothing would ever have collapsed into the big structures that we see today.

But thanks to these fluctuations, there were slightly denser and less dense regions, and of course, the denser regions had stronger gravitational fields. So they pulled in the matter from around them, and that clumped together the matter into huge gas clouds that would go on to be the galaxies that contain the stars and the planets and the things we know today.

You can actually see the imprint of these quantum fluctuations in the leftover radiation from the Big Bang: the cosmic microwave background radiation. The quantum fluctuations in the fields were amplified to big classical fluctuations in the density of matter from place to place. Those fluctuations in the density of matter show up in the universe today as temperature differences in the cosmic background radiation.

Ultimately, this results in things like stars, planets, and galaxies. I think it is incredible that, without these fluctuations in the vacuum, these tiny insignificant things that we take for granted, our universe might really contain nothing. Nothing of interest anyway.

Speaking of vacuum, this episode was supported in part by Dyson, who sent me their 360 Eye vacuuming robot. It's got this little camera on the top that can see 360 degrees around it. Now, it uses that vision, plus some complex math and trigonometry, to work out its location precisely and to figure out where it's cleaned already and where it still needs to clean.

It actually makes a map that you can see on your phone using the Dyson app, and you can use that app also to control the vacuum or to schedule it, even when you're not at home. So, I for one, welcome robots taking over the housework. If you want to find out more, you can click the link in the description.

So I want to thank Dyson for supporting me, and I want to thank my Patreon supporters, and of course you for watching.

More Articles

View All
Is This Literally The Best Investing Strategy that Exists?
We’re now almost halfway through 2023, and while we’ve seen inflation cool in recent times, there’s no doubt we’re still battling with high interest rates, which ultimately put the brakes on the economy and slow business. While this kind of environment is…
Collision theory and the Maxwell–Boltzmann distribution | Kinetics | AP Chemistry | Khan Academy
Collision theory can be related to Maxwell-Boltzmann distributions. First, we’ll start with collision theory. Collision theory says that particles must collide in the proper orientation and with enough kinetic energy to overcome the activation energy barr…
4th of July Fireworks Chemistry - Smarter Every Day 14
[Music] Hey, it’s me, Destin. So, uh, welcome to my 4th of July tradition. It’s something I do every year. I’m out here on the Bickering Nag, alone this year. Everybody else had something they had to do because the firework show is late. But anyway, I’m …
Successful Founders Are OK With Rejection – Dalton Caldwell and Michael Seibel
And so I just noticed a lot of these teams the really core thing going on is ego protection and nothing else. And like you can come up with all these intellectual arguments on why actually, you know, but when you really talk to someone and you get down to…
Announcing ThinkerCon! - A Celebration of Online Educational Content
Announcing ThinkerCon! Remember several years ago, five of us educational content creators got together, and we did this live event. It was really fun, but people came from like 40 states and 12 different nations for it. So, clearly, there’s a lot of dema…
My BEST techniques for a successful Open House
What’s up you guys! It’s Grand here. So, I’m finishing up an open house right now, and I thought, what better time than right now to make a video about how to hold an open house? So, I’m going to be sharing my tips, my tricks, and some of the things that …