yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Simplifying square-root expressions | Mathematics I | High School Math | Khan Academy


3m read
·Nov 11, 2024

Let's get some practice simplifying radical expressions that involve variables. So let's say I have ( 2 \times \sqrt{7x} \times 3 \times \sqrt{14x^2} ). Pause the video and see if you can simplify, taking any perfect squares out, multiplying, and then taking any perfect squares out of the radical sign.

Well, let's first just multiply this thing so we can change the order of multiplication. This is going to be the same thing as ( 2 \times 3 \times \sqrt{7x} \times \sqrt{14x^2} ). So this is going to be equal to ( 6 \times ) and then the product of two radicals can be viewed as the square root of the product. So, ( 6 \times \sqrt{7x \times 14x^2} ).

Actually, let me factor 14. 14 is ( 2 \times 7 \times x^2 ). Let me extend my radical sign a little bit. The reason why I didn't multiply it out is because we could have done that. ( x \times x^2 ) is ( x^3 ), and we could have said, "All right, ( 7 \times 14 ) is what, ( 98 )?" We could have done that, but when you're trying to factor out perfect squares, it's actually easier if it's in this factored form.

From a variable point of view, you could view this as a perfect square already. ( 14 ) is not a perfect square, ( 7 ) isn't a perfect square, but ( 7 \times 7 ) is ( 49 ). Let's rewrite this a little bit to see what we can do. This is going to be ( 6 \times \sqrt{49 \times x^2} \times \sqrt{2x} ).

Now, we could take the square root of the perfect squares. This comes straight out of our exponent properties, but what's valuable about this is we now see this as ( 6 \times 7x \times \sqrt{2x} ). The key thing to appreciate is that the radical of products is the same thing as the product of the square roots.

Even in this step that I did here, you could say that ( \sqrt{49x^2} = \sqrt{49} \times \sqrt{x^2} = 7 \times x ). Let's do another one of these.

So let's say I have ( \sqrt{2a} \times \sqrt{14a^3} \times \sqrt{5a} ). Like always, pause this video and see if you can simplify this on your own. Multiply them and then take all the perfect squares out of the radical.

So let’s multiply first. This is going to be the same thing as ( \sqrt{2 \times 14 \times 5} ). Let me factor it. 14 can be written as ( 2 \times 7 ).

So we have ( 2 \times (2 \times 7) \times 5 \times a \times a^3 \times a = \sqrt{(2 \times 2) \times (a^4)} \times \sqrt{(35a)} ). Now, the principal root of 4 is 2, the principal root of ( a^4 ) is ( a^2 ), and we're going to have that times ( \sqrt{35a} ).

Now, let's do one more example, and this time we're going to involve two variables, which as you’ll see, isn’t that much more complicated.

So let's simplify ( \sqrt{72x^3z^3} ). The key is can we factor? 72 is not a perfect square, but if you factor it, you get ( 36 \times 2 ).

36 is a perfect square, and likewise, ( x^3 ) and ( z^3 ) are not perfect squares, but they each have an ( x^2 ) and ( z^2 ) in them. So let me rewrite this. This is the same thing as ( \sqrt{36 \times x^2 \times z^2} \times \sqrt{(2 \times 2 \times x \times x \times z)} ).

2 is left, ( x^3/x^2 = x ), ( z^3/z^2 = z ). So this is ( \sqrt{36 \times x^2 \times z^2} ) giving us ( 6xz \sqrt{2xz} ).

And we are done!

More Articles

View All
Writing algebraic subtraction expressions | 6th grade | Khan Academy
We have different statements here that can each be expressed as an algebraic expression. As you might have guessed, I would love you to pause this video and try to write each of these statements as an algebraic expression before we do it together. All ri…
Multiplying 1-digit numbers by 10, 100, and 1000 | Math | 4th grade | Khan Academy
Let’s talk about multiplying by 10, 100, and 1,000. There’s some cool number patterns that happen with each of these, so let’s start here with something like 4 * 10—one that maybe we’re comfortable with or already know. 4 * 10 would be the same as saying…
Finding measures using rigid transformations
We are told that triangle ABC, which is right over here, is reflected across line L. So it’s reflected across the line L right over here to get to triangle A prime, B prime, C prime. Fair enough! So based on that, they’re going to ask us some questions, …
Why I'm going back to real estate
What’s up, Graham? It’s guys here. So here’s the deal: it’s no surprise that right now the real estate market is absolutely ridiculous. We’re seeing some of the highest prices on record, inventory is non-existent, and from the outside looking in, it appea…
Quick and Easy Voting for Normal People
Hello Internet! You know I love me some voting videos. These, however, are mostly about how organizations can improve their elections. But normal people need better voting too. Say a group of you are trying to decide what to have for dinner. There are th…
Khan Kickoff Overview
Here’s a quick overview of our free motivation program, Con Kickoff. Let’s start with the challenge, which is that motivating students right now is just super hard. With everything going on in the world, getting students to show up and engage day after d…