yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Simplifying square-root expressions | Mathematics I | High School Math | Khan Academy


3m read
·Nov 11, 2024

Let's get some practice simplifying radical expressions that involve variables. So let's say I have ( 2 \times \sqrt{7x} \times 3 \times \sqrt{14x^2} ). Pause the video and see if you can simplify, taking any perfect squares out, multiplying, and then taking any perfect squares out of the radical sign.

Well, let's first just multiply this thing so we can change the order of multiplication. This is going to be the same thing as ( 2 \times 3 \times \sqrt{7x} \times \sqrt{14x^2} ). So this is going to be equal to ( 6 \times ) and then the product of two radicals can be viewed as the square root of the product. So, ( 6 \times \sqrt{7x \times 14x^2} ).

Actually, let me factor 14. 14 is ( 2 \times 7 \times x^2 ). Let me extend my radical sign a little bit. The reason why I didn't multiply it out is because we could have done that. ( x \times x^2 ) is ( x^3 ), and we could have said, "All right, ( 7 \times 14 ) is what, ( 98 )?" We could have done that, but when you're trying to factor out perfect squares, it's actually easier if it's in this factored form.

From a variable point of view, you could view this as a perfect square already. ( 14 ) is not a perfect square, ( 7 ) isn't a perfect square, but ( 7 \times 7 ) is ( 49 ). Let's rewrite this a little bit to see what we can do. This is going to be ( 6 \times \sqrt{49 \times x^2} \times \sqrt{2x} ).

Now, we could take the square root of the perfect squares. This comes straight out of our exponent properties, but what's valuable about this is we now see this as ( 6 \times 7x \times \sqrt{2x} ). The key thing to appreciate is that the radical of products is the same thing as the product of the square roots.

Even in this step that I did here, you could say that ( \sqrt{49x^2} = \sqrt{49} \times \sqrt{x^2} = 7 \times x ). Let's do another one of these.

So let's say I have ( \sqrt{2a} \times \sqrt{14a^3} \times \sqrt{5a} ). Like always, pause this video and see if you can simplify this on your own. Multiply them and then take all the perfect squares out of the radical.

So let’s multiply first. This is going to be the same thing as ( \sqrt{2 \times 14 \times 5} ). Let me factor it. 14 can be written as ( 2 \times 7 ).

So we have ( 2 \times (2 \times 7) \times 5 \times a \times a^3 \times a = \sqrt{(2 \times 2) \times (a^4)} \times \sqrt{(35a)} ). Now, the principal root of 4 is 2, the principal root of ( a^4 ) is ( a^2 ), and we're going to have that times ( \sqrt{35a} ).

Now, let's do one more example, and this time we're going to involve two variables, which as you’ll see, isn’t that much more complicated.

So let's simplify ( \sqrt{72x^3z^3} ). The key is can we factor? 72 is not a perfect square, but if you factor it, you get ( 36 \times 2 ).

36 is a perfect square, and likewise, ( x^3 ) and ( z^3 ) are not perfect squares, but they each have an ( x^2 ) and ( z^2 ) in them. So let me rewrite this. This is the same thing as ( \sqrt{36 \times x^2 \times z^2} \times \sqrt{(2 \times 2 \times x \times x \times z)} ).

2 is left, ( x^3/x^2 = x ), ( z^3/z^2 = z ). So this is ( \sqrt{36 \times x^2 \times z^2} ) giving us ( 6xz \sqrt{2xz} ).

And we are done!

More Articles

View All
The Bull Market Of 2020 | Did We Miss The Stock Market Bottom?
What’s up guys, it’s Graham here. So, the other morning it was really like any other. I woke up around 6 a.m., I went to the kitchen, I got myself some coffee, I sat down in front of my computer, I took a sip of said coffee, and then I literally spit it b…
Surviving a Pathet Lao Prison | No Man Left Behind
Unassisted, Vietnam cannot produce the military formations essential to it. News is just breaking: a United States plane has been shot down over [Music] La. When they caught me, I took everything [Music] away, but you’ve got something that they can’t get…
15 AWESOME YouTube Tricks
Vsauce. Today we’re gonna be covering a topic that is very close to my heart. Clever uses of YouTube’s technologies. Now, I’ve always had a lot of fun messing around with stuff like the loading c… circle and annotations. But, let’s take a safari today th…
Surviving a Hippo Attack | Something Bit Me! | National Geographic
Deep beneath the surface of the Zambezi River in Zimbabwe, Africa, Kristen Yaldor is trapped in the jaws of a hippopotamus. As she struggles to free herself, the animal refuses to let go, ragdolling her back and forth. Hippos wouldn’t necessarily just dra…
Worked example: Continuity at a point | Limits and continuity | AP Calculus AB | Khan Academy
We have the graph of y is equal to g of x right over here. What I want to do is check which of these statements are actually true and then check them off. Like always, I encourage you to pause the video and see if you can work through this on your own. L…
Common denominators: 1/4 and 5/6 | Math | 4th grade | Khan Academy
You have two fractions: 1⁄4 and 56, and you want to rewrite them so they have the same denominator and have whole number numerators. What numbers could you use for the denominator? So, here’s our fractions: 1⁄4 and 56, and we want to rewrite these fracti…