yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Simplifying square-root expressions | Mathematics I | High School Math | Khan Academy


3m read
·Nov 11, 2024

Let's get some practice simplifying radical expressions that involve variables. So let's say I have ( 2 \times \sqrt{7x} \times 3 \times \sqrt{14x^2} ). Pause the video and see if you can simplify, taking any perfect squares out, multiplying, and then taking any perfect squares out of the radical sign.

Well, let's first just multiply this thing so we can change the order of multiplication. This is going to be the same thing as ( 2 \times 3 \times \sqrt{7x} \times \sqrt{14x^2} ). So this is going to be equal to ( 6 \times ) and then the product of two radicals can be viewed as the square root of the product. So, ( 6 \times \sqrt{7x \times 14x^2} ).

Actually, let me factor 14. 14 is ( 2 \times 7 \times x^2 ). Let me extend my radical sign a little bit. The reason why I didn't multiply it out is because we could have done that. ( x \times x^2 ) is ( x^3 ), and we could have said, "All right, ( 7 \times 14 ) is what, ( 98 )?" We could have done that, but when you're trying to factor out perfect squares, it's actually easier if it's in this factored form.

From a variable point of view, you could view this as a perfect square already. ( 14 ) is not a perfect square, ( 7 ) isn't a perfect square, but ( 7 \times 7 ) is ( 49 ). Let's rewrite this a little bit to see what we can do. This is going to be ( 6 \times \sqrt{49 \times x^2} \times \sqrt{2x} ).

Now, we could take the square root of the perfect squares. This comes straight out of our exponent properties, but what's valuable about this is we now see this as ( 6 \times 7x \times \sqrt{2x} ). The key thing to appreciate is that the radical of products is the same thing as the product of the square roots.

Even in this step that I did here, you could say that ( \sqrt{49x^2} = \sqrt{49} \times \sqrt{x^2} = 7 \times x ). Let's do another one of these.

So let's say I have ( \sqrt{2a} \times \sqrt{14a^3} \times \sqrt{5a} ). Like always, pause this video and see if you can simplify this on your own. Multiply them and then take all the perfect squares out of the radical.

So let’s multiply first. This is going to be the same thing as ( \sqrt{2 \times 14 \times 5} ). Let me factor it. 14 can be written as ( 2 \times 7 ).

So we have ( 2 \times (2 \times 7) \times 5 \times a \times a^3 \times a = \sqrt{(2 \times 2) \times (a^4)} \times \sqrt{(35a)} ). Now, the principal root of 4 is 2, the principal root of ( a^4 ) is ( a^2 ), and we're going to have that times ( \sqrt{35a} ).

Now, let's do one more example, and this time we're going to involve two variables, which as you’ll see, isn’t that much more complicated.

So let's simplify ( \sqrt{72x^3z^3} ). The key is can we factor? 72 is not a perfect square, but if you factor it, you get ( 36 \times 2 ).

36 is a perfect square, and likewise, ( x^3 ) and ( z^3 ) are not perfect squares, but they each have an ( x^2 ) and ( z^2 ) in them. So let me rewrite this. This is the same thing as ( \sqrt{36 \times x^2 \times z^2} \times \sqrt{(2 \times 2 \times x \times x \times z)} ).

2 is left, ( x^3/x^2 = x ), ( z^3/z^2 = z ). So this is ( \sqrt{36 \times x^2 \times z^2} ) giving us ( 6xz \sqrt{2xz} ).

And we are done!

More Articles

View All
A Forest Garden With 500 Edible Plants Could Lead to a Sustainable Future | Short Film Showcase
[Music] If you do nothing to a piece of land in tempered climates, it will become a forest. The forces of nature are actively moving the land towards a balanced, sustainable, and resilient ecosystem. This is called succession. In southwest England, an un…
Natural, cyclical, structural, and frictional unemployment rates | AP Macroeconomics | Khan Academy
[Instructor] We’ve already discussed the notion of unemployment at length in other videos. And what we’re going to do in this video is dig a little bit deeper and think about what makes up the unemployment rate? And just as a review, the unemployment ra…
Putting a Penny on John Wilkes Booth's Grave
Let’s talk about Robert Todd Lincoln. He was Abraham Lincoln’s son, and in 1863 or ‘64, he slipped at the New Jersey train depot. He was almost crushed by a train car, but his life was saved when a man reached out and grabbed him, pulling him back. That m…
Colbert's Life in the Swamp | Live Free or Die
[Music] [Music] Every day in the woods is just a constant challenge. It’s urgency after urgency, project after project. Got an otter! It’s a river otter. This is one of my most valuable pelts; it brings a top price, and, uh, not many people do, but I try…
Elliot Choy asks Ray Dalio about his early goals
Was was that first step for you? Do you recall kind of some of your early goals? Was it simply to find some level of success, some level of security? Do you remember what those first steps were for you? Well, it was, um, it was more a passion, you know? …
Watch: Shipwreck Hunter Discovers 500-Year-Old Treasures | Expedition Raw
This is their earliest pre-colonial shipwreck ever discovered. It’s from the European Age of Discovery when Columbus, Magellan, and Vasco da Gama were going around the world. This is the Esmeralda shipwreck of Vicente Sodré. We have over 2,800 individual …