yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Simplifying square-root expressions | Mathematics I | High School Math | Khan Academy


3m read
·Nov 11, 2024

Let's get some practice simplifying radical expressions that involve variables. So let's say I have ( 2 \times \sqrt{7x} \times 3 \times \sqrt{14x^2} ). Pause the video and see if you can simplify, taking any perfect squares out, multiplying, and then taking any perfect squares out of the radical sign.

Well, let's first just multiply this thing so we can change the order of multiplication. This is going to be the same thing as ( 2 \times 3 \times \sqrt{7x} \times \sqrt{14x^2} ). So this is going to be equal to ( 6 \times ) and then the product of two radicals can be viewed as the square root of the product. So, ( 6 \times \sqrt{7x \times 14x^2} ).

Actually, let me factor 14. 14 is ( 2 \times 7 \times x^2 ). Let me extend my radical sign a little bit. The reason why I didn't multiply it out is because we could have done that. ( x \times x^2 ) is ( x^3 ), and we could have said, "All right, ( 7 \times 14 ) is what, ( 98 )?" We could have done that, but when you're trying to factor out perfect squares, it's actually easier if it's in this factored form.

From a variable point of view, you could view this as a perfect square already. ( 14 ) is not a perfect square, ( 7 ) isn't a perfect square, but ( 7 \times 7 ) is ( 49 ). Let's rewrite this a little bit to see what we can do. This is going to be ( 6 \times \sqrt{49 \times x^2} \times \sqrt{2x} ).

Now, we could take the square root of the perfect squares. This comes straight out of our exponent properties, but what's valuable about this is we now see this as ( 6 \times 7x \times \sqrt{2x} ). The key thing to appreciate is that the radical of products is the same thing as the product of the square roots.

Even in this step that I did here, you could say that ( \sqrt{49x^2} = \sqrt{49} \times \sqrt{x^2} = 7 \times x ). Let's do another one of these.

So let's say I have ( \sqrt{2a} \times \sqrt{14a^3} \times \sqrt{5a} ). Like always, pause this video and see if you can simplify this on your own. Multiply them and then take all the perfect squares out of the radical.

So let’s multiply first. This is going to be the same thing as ( \sqrt{2 \times 14 \times 5} ). Let me factor it. 14 can be written as ( 2 \times 7 ).

So we have ( 2 \times (2 \times 7) \times 5 \times a \times a^3 \times a = \sqrt{(2 \times 2) \times (a^4)} \times \sqrt{(35a)} ). Now, the principal root of 4 is 2, the principal root of ( a^4 ) is ( a^2 ), and we're going to have that times ( \sqrt{35a} ).

Now, let's do one more example, and this time we're going to involve two variables, which as you’ll see, isn’t that much more complicated.

So let's simplify ( \sqrt{72x^3z^3} ). The key is can we factor? 72 is not a perfect square, but if you factor it, you get ( 36 \times 2 ).

36 is a perfect square, and likewise, ( x^3 ) and ( z^3 ) are not perfect squares, but they each have an ( x^2 ) and ( z^2 ) in them. So let me rewrite this. This is the same thing as ( \sqrt{36 \times x^2 \times z^2} \times \sqrt{(2 \times 2 \times x \times x \times z)} ).

2 is left, ( x^3/x^2 = x ), ( z^3/z^2 = z ). So this is ( \sqrt{36 \times x^2 \times z^2} ) giving us ( 6xz \sqrt{2xz} ).

And we are done!

More Articles

View All
Shadows of Forgotten Ancestors | Cosmos: Possible Worlds
OK, just for argument’s sake, suppose we’re nothing more than the sum total of our genetic inheritance. It’s not as bad as it sounds. There are passages in our DNA that are every bit as heroic as anything ever written in any epic saga. [low growl] [gentl…
Watch Experts Review The Most Unique Pieces l Mr. Wonderful x Wrist Enthusiast
[Music] Hi everyone, I’m Craig from R Enthusiast and today I have something special. I’m here with Kevin O’Leary from Shark Tank. Hi Kevin, great to be here! Thank you so much. I’m a big fan, by the way. Thank you, thank you very much. What I like to do…
Embracing Nihilism: What do we do when there's nothing?
God is dead. God remains dead, and we have killed him. How shall we comfort ourselves, the murderers of all murderers? What was holiest and mightiest of all that the world has yet owned has bled to death under our knives. Who will wipe this blood off of u…
Finding Frozen Mummies in One of the World’s Tallest Mountain Ranges | Best Job Ever
It’s part of mankind to want to explore. You are tremendously curious about the world, and we want to understand it better. You can’t turn yourself off. [Music] I want to be able to go into any kind of environment, work with any kind of people. We reali…
The FED Just Ruined Savings Accounts
What’s up, guys? It’s Graham here. So, unfortunately, in the last few weeks, you may have noticed a very significant change to your high interest savings account, and that would be a lack of high interest being paid in your savings account. That’s right.…
Estimating to subtract multi-digit numbers | Grade 5 (TX TEKS) | Khan Academy
So we have two subtraction problems here that I want you to estimate. I first want you to estimate what 51,384 minus 28,251 is, and then I want you to estimate what 761,023 minus 18,965 is. This little squiggly equal sign means approximately, so you’re on…