yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Simplifying square-root expressions | Mathematics I | High School Math | Khan Academy


3m read
·Nov 11, 2024

Let's get some practice simplifying radical expressions that involve variables. So let's say I have ( 2 \times \sqrt{7x} \times 3 \times \sqrt{14x^2} ). Pause the video and see if you can simplify, taking any perfect squares out, multiplying, and then taking any perfect squares out of the radical sign.

Well, let's first just multiply this thing so we can change the order of multiplication. This is going to be the same thing as ( 2 \times 3 \times \sqrt{7x} \times \sqrt{14x^2} ). So this is going to be equal to ( 6 \times ) and then the product of two radicals can be viewed as the square root of the product. So, ( 6 \times \sqrt{7x \times 14x^2} ).

Actually, let me factor 14. 14 is ( 2 \times 7 \times x^2 ). Let me extend my radical sign a little bit. The reason why I didn't multiply it out is because we could have done that. ( x \times x^2 ) is ( x^3 ), and we could have said, "All right, ( 7 \times 14 ) is what, ( 98 )?" We could have done that, but when you're trying to factor out perfect squares, it's actually easier if it's in this factored form.

From a variable point of view, you could view this as a perfect square already. ( 14 ) is not a perfect square, ( 7 ) isn't a perfect square, but ( 7 \times 7 ) is ( 49 ). Let's rewrite this a little bit to see what we can do. This is going to be ( 6 \times \sqrt{49 \times x^2} \times \sqrt{2x} ).

Now, we could take the square root of the perfect squares. This comes straight out of our exponent properties, but what's valuable about this is we now see this as ( 6 \times 7x \times \sqrt{2x} ). The key thing to appreciate is that the radical of products is the same thing as the product of the square roots.

Even in this step that I did here, you could say that ( \sqrt{49x^2} = \sqrt{49} \times \sqrt{x^2} = 7 \times x ). Let's do another one of these.

So let's say I have ( \sqrt{2a} \times \sqrt{14a^3} \times \sqrt{5a} ). Like always, pause this video and see if you can simplify this on your own. Multiply them and then take all the perfect squares out of the radical.

So let’s multiply first. This is going to be the same thing as ( \sqrt{2 \times 14 \times 5} ). Let me factor it. 14 can be written as ( 2 \times 7 ).

So we have ( 2 \times (2 \times 7) \times 5 \times a \times a^3 \times a = \sqrt{(2 \times 2) \times (a^4)} \times \sqrt{(35a)} ). Now, the principal root of 4 is 2, the principal root of ( a^4 ) is ( a^2 ), and we're going to have that times ( \sqrt{35a} ).

Now, let's do one more example, and this time we're going to involve two variables, which as you’ll see, isn’t that much more complicated.

So let's simplify ( \sqrt{72x^3z^3} ). The key is can we factor? 72 is not a perfect square, but if you factor it, you get ( 36 \times 2 ).

36 is a perfect square, and likewise, ( x^3 ) and ( z^3 ) are not perfect squares, but they each have an ( x^2 ) and ( z^2 ) in them. So let me rewrite this. This is the same thing as ( \sqrt{36 \times x^2 \times z^2} \times \sqrt{(2 \times 2 \times x \times x \times z)} ).

2 is left, ( x^3/x^2 = x ), ( z^3/z^2 = z ). So this is ( \sqrt{36 \times x^2 \times z^2} ) giving us ( 6xz \sqrt{2xz} ).

And we are done!

More Articles

View All
Gordon Goes Spearfishing for Snapper | Gordon Ramsay: Uncharted
Beautiful. Yeah. While it will be easy to spend the rest of the day relaxing on this beautiful beach, there’s work to be done underwater. That snapper I just tasted is exactly what I need for my big cook, and legendary local spear fisherman Tony is the ma…
THE ART OF SLOW LIVING: SAVORING LIFE ONE MOMENT AT A TIME | STOICISM
In our relentless quest for more and faster, it’s astonishing how much of life’s profound beauty and depth we sacrifice. The Stoics believe that to live fully, one must not just bear life’s challenges but also cherish them. Each obstacle is a teacher, and…
Virtually Viral | Explorers in the Field
(Gentle music) [Pardis] Early on when my research wasn’t going that well, and I was having trouble, people would be like, well, she’s in a band. But then when my research started going well, and I started publishing, they’d be like wow, and she’s in a ba…
Why Stupidity is Power | Priceless Benefits of Being Stupid
People generally fear being perceived as stupid. Often, stupid people are looked down upon and laughed at. Society perceives stupid people as useless, as a burden rather than an asset. Hence, most of us try to prevent ourselves from appearing stupid in fr…
How I bought a Tesla for $78 Per Month
I just bought the $35,000 Tesla Model 3, and just like any 28-year-old millennial adieu, I ordered it online without ever having seen it and without ever having driven one before. Here’s what happened: I was browsing YouTube and happened to come across a…
Ilya Volodarsky - Analytics for Startups
Hi everyone! My name is Ilya. I’m one of the co-founders at Segment, and I’m here to talk to you about how to set up analytics and the analytics foundation to build your MVP and to measure these primary and secondary metrics. So this is going to be a lit…