yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Earth's mysterious red glow, explained - Zoe Pierrat


3m read
·Nov 8, 2024

In 2009, a satellite circled Earth, methodically scanning and sorting the wavelengths reflecting off the planet’s surface. Researchers were looking for the spectral signature of carbon dioxide when they noticed something baffling: an unexpected wavelength of unknown origin. They tried looking at Earth with only this wavelength and saw the planet covered in a red hue of varying intensity. This couldn’t have been reflected sunlight because it was a wavelength that never escapes the Sun’s outer atmosphere.

And it didn’t correspond with densely populated areas, suggesting it wasn’t human-made either. In fact, it was emanating from places with lots of plants: the Amazon basin, northern evergreen forests, and croplands of the Midwestern US were all ablaze. So, what was going on? Plants and other organisms use light to grow by way of photosynthesis. But that’s just one of three ways that light entering a photosynthetic organism is used.

And this is the key to solving the mystery. To understand the others, we need to begin with photosynthesis. During this process, sunlight hits structures within a plant’s cells called chloroplasts, which are packed with chlorophyll pigments. When chlorophyll molecules absorb light, some of their electrons become excited. They go through a series of reactions, which transform light energy into chemical energy. This powers the conversion of carbon dioxide and water into glucose, the simple sugar plants need to grow.

And of course, this reaction generates an important byproduct. Photosynthesis—which is constantly being carried out by plants, algae, and bacteria—produces all of Earth’s oxygen. But plants regularly absorb more light than they’re able to consume. For instance, over winter, the frozen leaves of evergreen trees can't photosynthesize at their usual rate, but they're still exposed to a lot of sunlight. If not dealt with, the excess light can damage their photosynthetic machinery.

So, the second way plants use light is by transforming it into heat and dissipating it out of their leaves. The third way plants interact with incoming light is by radiating it back out at a different wavelength, producing what’s called chlorophyll fluorescence. During photosynthesis, the chlorophyll’s excited electrons move through that series of chemical reactions. But as some of the excited electrons fall back to their ground states, they emit energy as light.

Overall, about 1% of the light absorbed is re-emitted as wavelengths at the red end of the spectrum. It’s such a small amount that you can’t see it with the naked eye. But plants the world over are fluorescing as they photosynthesize. And this is what’s caused the Earth’s baffling red glow, as observed by satellite. It was an accidental discovery, but a huge breakthrough.

Tracking chlorophyll fluorescence from space allows us to watch the planet breathe in real time—and monitor the health of ecosystems worldwide. Previously, researchers used levels of greenness as the main estimate for plant health. Because plants generally change colors or lose foliage when they’re stressed, higher levels of green typically indicate healthier plants. But this measure can be unreliable.

In contrast, chlorophyll fluorescence is a direct measure of photosynthetic activity. It can help us infer how much oxygen is being released and how much carbon is being absorbed in a given system. Drops in chlorophyll fluorescence may also occur before visible signs of plant stress, making it a timely measure.

Scientists have already used chlorophyll fluorescence to monitor harmful phytoplankton blooms and track the effects of drought in the Amazon and Great Plains. Going forward, we’ll be investigating photosynthesis from space and gauging how best to support our silent friends, who already do so much for us.

More Articles

View All
Protecting the Okavango Ecosystem | National Geographic
Healthy ecosystems support rich biodiversity. The Okavango Delta hosts one of the most vibrant on Earth. Pristine water from Angola becomes the life force that sustains a vast variety of species. Two on the right! One on the left there! Each plays its par…
NASA to Make Contact With Asteroid That Could Threaten Earth | National Geographic
Asteroid Benu is a fascinating object. It records our solar system’s earliest history, contains information about the origins of life, and has uncertainties in its orbit that leaves a small possibility of impacting Earth late in the 22nd century. These pr…
The Student's Guide To Becoming A Successful Startup Founder
Your job is to be an optimist. Your job is to believe amazing things about what you can do with your life and what you do in the world when you’re young. That’s the point. That’s the point. That’s why the world needs young people. [Music] This is Michae…
Howard Marks: 5 Strategies to Outperform the Market in 2021
Or number five, you can try to look for exceptions. What I call special niches, special people, who hopefully can produce a good return with safety in a low return world. But those people are truly exceptional and not easy to find. What inning do you see…
The CIA's TOP SECRET Mind Control Drug
At the end of the Korean War, The New York Times published a gripping story detailing how returning American soldiers may have been converted by communist brainwashers. The story became widely popular. Some troops were allegedly confessing to war crimes, …
Having no charisma is ruining your life
Due to the internet age and people being on their phones all the time, people have lost the ability to communicate effectively with other people. And that’s probably not a secret to you at all. You’ve probably felt the effects of this in your own life. Th…