yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Earth's mysterious red glow, explained - Zoe Pierrat


3m read
·Nov 8, 2024

In 2009, a satellite circled Earth, methodically scanning and sorting the wavelengths reflecting off the planet’s surface. Researchers were looking for the spectral signature of carbon dioxide when they noticed something baffling: an unexpected wavelength of unknown origin. They tried looking at Earth with only this wavelength and saw the planet covered in a red hue of varying intensity. This couldn’t have been reflected sunlight because it was a wavelength that never escapes the Sun’s outer atmosphere.

And it didn’t correspond with densely populated areas, suggesting it wasn’t human-made either. In fact, it was emanating from places with lots of plants: the Amazon basin, northern evergreen forests, and croplands of the Midwestern US were all ablaze. So, what was going on? Plants and other organisms use light to grow by way of photosynthesis. But that’s just one of three ways that light entering a photosynthetic organism is used.

And this is the key to solving the mystery. To understand the others, we need to begin with photosynthesis. During this process, sunlight hits structures within a plant’s cells called chloroplasts, which are packed with chlorophyll pigments. When chlorophyll molecules absorb light, some of their electrons become excited. They go through a series of reactions, which transform light energy into chemical energy. This powers the conversion of carbon dioxide and water into glucose, the simple sugar plants need to grow.

And of course, this reaction generates an important byproduct. Photosynthesis—which is constantly being carried out by plants, algae, and bacteria—produces all of Earth’s oxygen. But plants regularly absorb more light than they’re able to consume. For instance, over winter, the frozen leaves of evergreen trees can't photosynthesize at their usual rate, but they're still exposed to a lot of sunlight. If not dealt with, the excess light can damage their photosynthetic machinery.

So, the second way plants use light is by transforming it into heat and dissipating it out of their leaves. The third way plants interact with incoming light is by radiating it back out at a different wavelength, producing what’s called chlorophyll fluorescence. During photosynthesis, the chlorophyll’s excited electrons move through that series of chemical reactions. But as some of the excited electrons fall back to their ground states, they emit energy as light.

Overall, about 1% of the light absorbed is re-emitted as wavelengths at the red end of the spectrum. It’s such a small amount that you can’t see it with the naked eye. But plants the world over are fluorescing as they photosynthesize. And this is what’s caused the Earth’s baffling red glow, as observed by satellite. It was an accidental discovery, but a huge breakthrough.

Tracking chlorophyll fluorescence from space allows us to watch the planet breathe in real time—and monitor the health of ecosystems worldwide. Previously, researchers used levels of greenness as the main estimate for plant health. Because plants generally change colors or lose foliage when they’re stressed, higher levels of green typically indicate healthier plants. But this measure can be unreliable.

In contrast, chlorophyll fluorescence is a direct measure of photosynthetic activity. It can help us infer how much oxygen is being released and how much carbon is being absorbed in a given system. Drops in chlorophyll fluorescence may also occur before visible signs of plant stress, making it a timely measure.

Scientists have already used chlorophyll fluorescence to monitor harmful phytoplankton blooms and track the effects of drought in the Amazon and Great Plains. Going forward, we’ll be investigating photosynthesis from space and gauging how best to support our silent friends, who already do so much for us.

More Articles

View All
Feeding the Cheetah Triplets | Magic of Disney's Animal Kingdom
I don’t go to the gym very often. It’s a real workout. Gotta come and shift the girls in. So every single day we’re doing this trek in the land of Africa. Five-year-old cheetah triplets Maathai, Murie, and Fossey wait for keeper Dominique to serve breakf…
When You Stop Being Available, Everything Changes | Carl Jung
Have you ever felt the weight of constantly being reachable emotionally, physically, mentally? Have you ever wondered what might happen if instead of responding on command, you simply chose to pause, to withdraw, to be still? What would happen if your pre…
Paul Buchheit: What traits do startups need to succeed?
I think like focus is one of the most important things because like as a start-up, it’s actually I think your most powerful weapon. Right? Like the reason that you’re able to take on like these big companies or areas is because they’re doing a thousand di…
Startup Investor School Day 1 Live Stream
And the way the course is organized is there’s a lecture and then there’s a Q&A afterwards. So please hold your questions until the Q&A session at the end unless an instructor explicitly says they want questions during their talk. I will also take…
The Jet Business Bloomberg Editorial October 2013
People drive by; they see this Airbus corporate jet in the window. They catch their attention, and they come in to see what this place is. It is the most global market of any industry. Africa is a big market. Asia is a big market. London was a location wh…
Inductor kickback 1 of 2
I want to talk about a new example of an inductor circuit, and we have one shown here where this inductor is now controlled by a switch. This is a push button switch that we move in and out, and this metal plate here will touch these two contacts and comp…