yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Second derivatives (vector-valued functions) | Advanced derivatives | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

So I have a vector valued function H here. When I say vector valued, it means you give me a T; it's a function of T. So you give me a T, I'm not just going to give you a number; I'm going to give you a vector. As we'll see, you're going to get a two-dimensional vector.

You could view this as the X component of the vector and the Y component of the vector. You are probably familiar by now that there's multiple notations for even a two-dimensional vector. For example, you could use what's often viewed as engineering notation here, where the X component is being multiplied by the horizontal comp unit vector.

So you might see something like that, where that's the unit vector plus the Y component, 4T^4 + 2T + 1, is multiplied by the vertical unit vector. These are both representing the same thing; it just has a different notation. Sometimes you'll see vector valued functions with an arrow on top to make it explicit that this is a vector valued function.

Sometimes you'll just hear people say, "Well, let H be a vector valued function," and they might not write that arrow on top. So now that we have that out of the way, what we are interested in is, well, let's find the first and second derivatives of H with respect to T.

So let's first take the first derivative H prime of T. Well, as you'll see, that's actually quite straightforward. You're just going to take the respective components with respect to T. So the X component with respect to T, if you were to take the derivative, what are you going to get?

Well, we're going to use the power rule right over here: 5 * the negative 1, or time the negative, you're going to get -5 * T^(5 - 1) power, so T^4. The derivative with respect to T of -6, well that's just zero. So that's the rate of change of the X component with respect to T.

Now we go to the Y component, so we're going to do the same thing. The derivative with respect to T is going to be, and once again we just use the power rule. 4 * 4 is 16, T^3. The derivative of 2T is just 2, and then the derivative of a constant, well, that's zero; we've already seen that.

So there you have it. This is the rate of change of the X component with respect to T, this is the rate of change of the Y component with respect to T. One way to do it, and you know a vector can represent many, many, many different things, but the type of a two-dimensional vector like this, you could imagine this being H of T being a position vector in two dimensions.

If you're looking at the rate of change of position with respect to time, well then this would be the velocity vector. If we were to take the derivative of this with respect to time, well, we're going to get the acceleration vector.

So if we say H prime prime of T, what is that going to be equal to? H prime prime of T, well we just apply the power rule again. So 4 * -5 is equal to -20 T^(4 - 1), so T^3. Then we have 3 * 16 is 48 T^2, and then the derivative of 2 is just zero.

So there you have it. For any, if you view T as time, for any time, if you view this one as position, this one as velocity, and this is acceleration, you could, this would now give you the position, velocity, and acceleration. But it's important to realize that these vectors could represent anything of a two-dimensional nature.

More Articles

View All
What You Do Counts | Podcast | Overheard at National Geographic
Foreign hey there it’s Amy. Today we’ve got something special for you. We’ve invited our Nachio colleague and Reporting resident Jordan Salama to guest host overheard. He’s going to introduce us to a 22-year-old climate activist and Nat Geo explorer who h…
Vortex Shedding - Smarter Every Day 23
[Engines screaming] Hey, it’s me, Destin. We’re at an airshow. So today I’m going to teach you about vortex shedding. [Music] Engines screaming YEAH! (Destin) Fly… flying our airplanes. Engine roaring I can’t hear you. Why does the smoke come out of the a…
How Would You Envision a Space Colony? | Short Film Showcase
What if you lived in the 1500s and you knew there was a guy named Sir Jeffrey Bezos and Sir Elon Musk, and you knew they were building what they were going to call Mayfl flowers? These May flowers were going to be able to take people to new worlds. How wo…
Drifting Away from People: The Dark Side of Solitude
In the novel The Stranger by absurdist philosopher Albert Camus, the main character Meursault finds himself, in a way, apart from the world around him. He’s not following conventions, doesn’t really mingle with his environment, and has a unique way of res…
YENİ KAPSÜL ÇADIRIMIZLA KARDA KAMP
Özgür: There’s bear poop here. Burcu: Where? Özgür: Right behind us. Burcu: Those? Özgür: Yes. Burcu: Oh, it’s pretty big. Burcu: Looks great inside. Özgür: These are lightweight as well. Burcu: The air’s freezing up now. Özgür: Yeah. Burcu: It’…
Top Ways Startups Waste Money
I’ll say this: if you want to get really good at firing vendors, hiring a PR agency is a great way to get your feet wet, right? Because I don’t know anyone that’s ever hired a PR agency that hasn’t fired PR agencies. [Music] Hello, this is Michael with H…