yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Second derivatives (vector-valued functions) | Advanced derivatives | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

So I have a vector valued function H here. When I say vector valued, it means you give me a T; it's a function of T. So you give me a T, I'm not just going to give you a number; I'm going to give you a vector. As we'll see, you're going to get a two-dimensional vector.

You could view this as the X component of the vector and the Y component of the vector. You are probably familiar by now that there's multiple notations for even a two-dimensional vector. For example, you could use what's often viewed as engineering notation here, where the X component is being multiplied by the horizontal comp unit vector.

So you might see something like that, where that's the unit vector plus the Y component, 4T^4 + 2T + 1, is multiplied by the vertical unit vector. These are both representing the same thing; it just has a different notation. Sometimes you'll see vector valued functions with an arrow on top to make it explicit that this is a vector valued function.

Sometimes you'll just hear people say, "Well, let H be a vector valued function," and they might not write that arrow on top. So now that we have that out of the way, what we are interested in is, well, let's find the first and second derivatives of H with respect to T.

So let's first take the first derivative H prime of T. Well, as you'll see, that's actually quite straightforward. You're just going to take the respective components with respect to T. So the X component with respect to T, if you were to take the derivative, what are you going to get?

Well, we're going to use the power rule right over here: 5 * the negative 1, or time the negative, you're going to get -5 * T^(5 - 1) power, so T^4. The derivative with respect to T of -6, well that's just zero. So that's the rate of change of the X component with respect to T.

Now we go to the Y component, so we're going to do the same thing. The derivative with respect to T is going to be, and once again we just use the power rule. 4 * 4 is 16, T^3. The derivative of 2T is just 2, and then the derivative of a constant, well, that's zero; we've already seen that.

So there you have it. This is the rate of change of the X component with respect to T, this is the rate of change of the Y component with respect to T. One way to do it, and you know a vector can represent many, many, many different things, but the type of a two-dimensional vector like this, you could imagine this being H of T being a position vector in two dimensions.

If you're looking at the rate of change of position with respect to time, well then this would be the velocity vector. If we were to take the derivative of this with respect to time, well, we're going to get the acceleration vector.

So if we say H prime prime of T, what is that going to be equal to? H prime prime of T, well we just apply the power rule again. So 4 * -5 is equal to -20 T^(4 - 1), so T^3. Then we have 3 * 16 is 48 T^2, and then the derivative of 2 is just zero.

So there you have it. For any, if you view T as time, for any time, if you view this one as position, this one as velocity, and this is acceleration, you could, this would now give you the position, velocity, and acceleration. But it's important to realize that these vectors could represent anything of a two-dimensional nature.

More Articles

View All
Different mediums and the tone of the text | Reading | Khan Academy
Hello readers. I would like to show you one of my favorite things I ever wrote. It’s this splash page from a comic I wrote some years ago, illustrated by my friend Core Biladu. You’ll notice it has almost no words in it, at least in this form. Now, let m…
Why You Should NOT Buy A Home In 2022
What’s up, Graham? It’s guys here, and welp, it’s official. We are setting records, but unfortunately, it’s probably not for the best of reasons. It was just reported that housing affordability is nearing the worst it’s ever been in history, and as a resu…
How to Photograph the Night Sky | National Geographic
I’m Bubba Wallace and I am a NASCAR race car driver. Photography is a hobby that I love to do. Definitely a good counterbalance to the fast-paced life that I live. We are in Gooseberry Mesa, Utah, to capture some nighttime astrophotography with a new frie…
Return on capital and economic growth
One of the core ideas of “Capital in the 21st Century” is comparing the after-tax return on capital, let me write that a little bit neater: return on capital, to economic growth. The contention is that if the return on capital ® is greater than economic g…
How did Reagan's policies affect the economy? | US Government and Civics | Khan Academy
How did Ronald Reagan’s policies affect the government and economy? What Ronald Reagan believed is that good programs—he had been a New Deal Democrat—he believed that what had happened was good programs that had tried to help people who needed the help: …
Analyzing mosaic plots | Exploring two-variable data | AP Statistics | Khan Academy
We’re told that administrators at a school are considering a policy change. They survey a group of students, staff members, and parents about whether or not they agree with the new policy. The following mosaic plot summarizes their results. Which of the f…