yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Second derivatives (vector-valued functions) | Advanced derivatives | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

So I have a vector valued function H here. When I say vector valued, it means you give me a T; it's a function of T. So you give me a T, I'm not just going to give you a number; I'm going to give you a vector. As we'll see, you're going to get a two-dimensional vector.

You could view this as the X component of the vector and the Y component of the vector. You are probably familiar by now that there's multiple notations for even a two-dimensional vector. For example, you could use what's often viewed as engineering notation here, where the X component is being multiplied by the horizontal comp unit vector.

So you might see something like that, where that's the unit vector plus the Y component, 4T^4 + 2T + 1, is multiplied by the vertical unit vector. These are both representing the same thing; it just has a different notation. Sometimes you'll see vector valued functions with an arrow on top to make it explicit that this is a vector valued function.

Sometimes you'll just hear people say, "Well, let H be a vector valued function," and they might not write that arrow on top. So now that we have that out of the way, what we are interested in is, well, let's find the first and second derivatives of H with respect to T.

So let's first take the first derivative H prime of T. Well, as you'll see, that's actually quite straightforward. You're just going to take the respective components with respect to T. So the X component with respect to T, if you were to take the derivative, what are you going to get?

Well, we're going to use the power rule right over here: 5 * the negative 1, or time the negative, you're going to get -5 * T^(5 - 1) power, so T^4. The derivative with respect to T of -6, well that's just zero. So that's the rate of change of the X component with respect to T.

Now we go to the Y component, so we're going to do the same thing. The derivative with respect to T is going to be, and once again we just use the power rule. 4 * 4 is 16, T^3. The derivative of 2T is just 2, and then the derivative of a constant, well, that's zero; we've already seen that.

So there you have it. This is the rate of change of the X component with respect to T, this is the rate of change of the Y component with respect to T. One way to do it, and you know a vector can represent many, many, many different things, but the type of a two-dimensional vector like this, you could imagine this being H of T being a position vector in two dimensions.

If you're looking at the rate of change of position with respect to time, well then this would be the velocity vector. If we were to take the derivative of this with respect to time, well, we're going to get the acceleration vector.

So if we say H prime prime of T, what is that going to be equal to? H prime prime of T, well we just apply the power rule again. So 4 * -5 is equal to -20 T^(4 - 1), so T^3. Then we have 3 * 16 is 48 T^2, and then the derivative of 2 is just zero.

So there you have it. For any, if you view T as time, for any time, if you view this one as position, this one as velocity, and this is acceleration, you could, this would now give you the position, velocity, and acceleration. But it's important to realize that these vectors could represent anything of a two-dimensional nature.

More Articles

View All
Underwater on Bermuda’s Montana Shipwreck – 180 | National Geographic
I’m Dr. Fleet Max Rouge. I work for the Bermuda government overseeing the shipwrecks that surround this island. Every one of them has an incredible story to tell. Now, I’ve been the custodian of historic wrecks for the islands of Bermuda for about just ov…
Nuclear fusion | Physics | Khan Academy
We believe that after the Big Bang, the early Universe contained mostly hydrogen, helium, and traces of lithium. But then how did the rest of the elements come by? For example, where did the oxygen that we are breathing right now or the calcium in our bon…
The Dangers of Free Diving | Science of Stupid: Ridiculous Fails
And now, we briefly interrupt our critique of the extra silly to salute someone extra special. Now, if I suggested a sport that literally drained your body of life sustaining oxygen, edging you to the very brink of existence, you’d probably say, no thank…
How To Become Whole (Carl Jung & The Individuation Process)
Conscious and unconscious do not make a whole when one of them is suppressed and injured by the other. If they must contend, let it at least be a fair fight with equal rights on both sides. Both are aspects of life. — Carl Jung. In my previous videos ab…
The Strange—but Necessary—Task of Vaccinating Wild Seals | National Geographic
You’re walking around with a sharp needle on the end of a stick, and you’re walking around rocks and tide pools and some terrain that could be tricky. Then, you’re approaching a 400-plus-pound animal, an endangered species, and you’re going to try to, you…
Warren Buffett's 2021 Stock Portfolio
Hey guys, welcome back to the channel! In this video, we are going to be talking about what Warren Buffett has been buying and selling in Q4 of 2020 and what his stock portfolio looks like as we lead into 2021. Because yes, I know it’s February already in…