yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Second derivatives (vector-valued functions) | Advanced derivatives | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

So I have a vector valued function H here. When I say vector valued, it means you give me a T; it's a function of T. So you give me a T, I'm not just going to give you a number; I'm going to give you a vector. As we'll see, you're going to get a two-dimensional vector.

You could view this as the X component of the vector and the Y component of the vector. You are probably familiar by now that there's multiple notations for even a two-dimensional vector. For example, you could use what's often viewed as engineering notation here, where the X component is being multiplied by the horizontal comp unit vector.

So you might see something like that, where that's the unit vector plus the Y component, 4T^4 + 2T + 1, is multiplied by the vertical unit vector. These are both representing the same thing; it just has a different notation. Sometimes you'll see vector valued functions with an arrow on top to make it explicit that this is a vector valued function.

Sometimes you'll just hear people say, "Well, let H be a vector valued function," and they might not write that arrow on top. So now that we have that out of the way, what we are interested in is, well, let's find the first and second derivatives of H with respect to T.

So let's first take the first derivative H prime of T. Well, as you'll see, that's actually quite straightforward. You're just going to take the respective components with respect to T. So the X component with respect to T, if you were to take the derivative, what are you going to get?

Well, we're going to use the power rule right over here: 5 * the negative 1, or time the negative, you're going to get -5 * T^(5 - 1) power, so T^4. The derivative with respect to T of -6, well that's just zero. So that's the rate of change of the X component with respect to T.

Now we go to the Y component, so we're going to do the same thing. The derivative with respect to T is going to be, and once again we just use the power rule. 4 * 4 is 16, T^3. The derivative of 2T is just 2, and then the derivative of a constant, well, that's zero; we've already seen that.

So there you have it. This is the rate of change of the X component with respect to T, this is the rate of change of the Y component with respect to T. One way to do it, and you know a vector can represent many, many, many different things, but the type of a two-dimensional vector like this, you could imagine this being H of T being a position vector in two dimensions.

If you're looking at the rate of change of position with respect to time, well then this would be the velocity vector. If we were to take the derivative of this with respect to time, well, we're going to get the acceleration vector.

So if we say H prime prime of T, what is that going to be equal to? H prime prime of T, well we just apply the power rule again. So 4 * -5 is equal to -20 T^(4 - 1), so T^3. Then we have 3 * 16 is 48 T^2, and then the derivative of 2 is just zero.

So there you have it. For any, if you view T as time, for any time, if you view this one as position, this one as velocity, and this is acceleration, you could, this would now give you the position, velocity, and acceleration. But it's important to realize that these vectors could represent anything of a two-dimensional nature.

More Articles

View All
The Sun is NOT Yellow! #shorts
The sun is yellow, or is it? You’re used to seeing a happy yellow circle floating in a blue sky, but that’s fake news. If you placed a prism in a sunbeam in space, you’d see that the sun radiates light in every color of the visible spectrum. If these colo…
Bitcoin Just Ended Investing | The NEW 60/40 Rule
What’s up, ding dongs? It’s Poinky Doink here! There you go, I said it! But anyway, I never thought I would be making a video on this topic today. But research has just come out that claims the traditional way investors grow their wealth, build their mon…
BONUS: History of the possessive apostrophe | The Apostrophe | Punctuation | Khan Academy
Hello Garans and historians and linguists and friends. David here along with Jake. Hey! And Paige. Hello! I want to continue our discussion of the history of the apostrophe in English. What I’m having Jake draw for me right now is an Old English king, be…
Is This What Quantum Mechanics Looks Like?
Check this out! I’m using this speaker to vibrate a petri dish containing silicon oil. Now, if I take this toothpick and make a little droplet on the surface, the droplet will stay there, hovering above the surface. The droplet is actually bouncing, and i…
Creativity break: When did you first realize that you liked algebra | Algebra 1 | Khan Academy
[Music] One day, my family was building this fence around my chicken coop because there were problems with raccoons. We wanted to make sure that the perimeter of the fence was like twice the length of the width. I remember thinking this is exactly like m…
Millennium Falcon or Starship Enterprise? - Fan Question | StarTalk
[Music] Oh, that’s easy. Oh my gosh, no, the Enterprise! There’s no question. No question! The Enterprise has the benefit of being real, in the sense that there are real scientists and real engineers on staff on the ship monitoring its engines, its warp …