yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Second derivatives (vector-valued functions) | Advanced derivatives | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

So I have a vector valued function H here. When I say vector valued, it means you give me a T; it's a function of T. So you give me a T, I'm not just going to give you a number; I'm going to give you a vector. As we'll see, you're going to get a two-dimensional vector.

You could view this as the X component of the vector and the Y component of the vector. You are probably familiar by now that there's multiple notations for even a two-dimensional vector. For example, you could use what's often viewed as engineering notation here, where the X component is being multiplied by the horizontal comp unit vector.

So you might see something like that, where that's the unit vector plus the Y component, 4T^4 + 2T + 1, is multiplied by the vertical unit vector. These are both representing the same thing; it just has a different notation. Sometimes you'll see vector valued functions with an arrow on top to make it explicit that this is a vector valued function.

Sometimes you'll just hear people say, "Well, let H be a vector valued function," and they might not write that arrow on top. So now that we have that out of the way, what we are interested in is, well, let's find the first and second derivatives of H with respect to T.

So let's first take the first derivative H prime of T. Well, as you'll see, that's actually quite straightforward. You're just going to take the respective components with respect to T. So the X component with respect to T, if you were to take the derivative, what are you going to get?

Well, we're going to use the power rule right over here: 5 * the negative 1, or time the negative, you're going to get -5 * T^(5 - 1) power, so T^4. The derivative with respect to T of -6, well that's just zero. So that's the rate of change of the X component with respect to T.

Now we go to the Y component, so we're going to do the same thing. The derivative with respect to T is going to be, and once again we just use the power rule. 4 * 4 is 16, T^3. The derivative of 2T is just 2, and then the derivative of a constant, well, that's zero; we've already seen that.

So there you have it. This is the rate of change of the X component with respect to T, this is the rate of change of the Y component with respect to T. One way to do it, and you know a vector can represent many, many, many different things, but the type of a two-dimensional vector like this, you could imagine this being H of T being a position vector in two dimensions.

If you're looking at the rate of change of position with respect to time, well then this would be the velocity vector. If we were to take the derivative of this with respect to time, well, we're going to get the acceleration vector.

So if we say H prime prime of T, what is that going to be equal to? H prime prime of T, well we just apply the power rule again. So 4 * -5 is equal to -20 T^(4 - 1), so T^3. Then we have 3 * 16 is 48 T^2, and then the derivative of 2 is just zero.

So there you have it. For any, if you view T as time, for any time, if you view this one as position, this one as velocity, and this is acceleration, you could, this would now give you the position, velocity, and acceleration. But it's important to realize that these vectors could represent anything of a two-dimensional nature.

More Articles

View All
Introduction to hands-on science activities
Hi everyone! I’m Donna and I’m Via. We create the science courses on KH Academy. We’re excited to introduce new physics and chemistry activities sponsored by Adobe, and new biology activities sponsored by Amen. You can find all of these middle school and…
The Next Market Crash - 7 Ways To Make Money
What’s up, you guys? It’s Graham here. So I feel like it’s time we address something that probably a lot of us have recently considered, and that would be the next stock market crash. After all, in the last week, the stock market has risen to brand new re…
DeepSeek R1 Explained to your grandma
This new large language model has taken the tech world by absolute storm and represents a big breakthrough in the AI research community. Last Sunday, while TikTok was banned for 12 hours, an AI research team from China released a new large language model …
THIS Common Mistake Ruins Small Businesses | Tom Segura
But within families, there’s always ego intention. Always. There’s the brother, the sister, the mother, the cousin, whatever. If you are unable to fire your own mother, you shouldn’t run the family business because you’ve got to think about the business f…
Do We Have Free Will? | Robert Sapolsky & Andrew Huberman
Speaker A: - Along the lines of choice, I’d like to shift gears slightly and talk about free will, about our ability to make choices at all. Speaker B: - Well, my personal way out in left field inflammatory stance is I don’t think we have a shred of free…
Why Don't We Taxidermy Humans?
Hey, Vsauce. Michael here. And when you die, what happens to your body? It can be buried or cremated or donated to science, but are those your only options? I mean, what if I wanted to be taxidermied, like my friend here? What if I requested to have my b…