yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Second derivatives (vector-valued functions) | Advanced derivatives | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

So I have a vector valued function H here. When I say vector valued, it means you give me a T; it's a function of T. So you give me a T, I'm not just going to give you a number; I'm going to give you a vector. As we'll see, you're going to get a two-dimensional vector.

You could view this as the X component of the vector and the Y component of the vector. You are probably familiar by now that there's multiple notations for even a two-dimensional vector. For example, you could use what's often viewed as engineering notation here, where the X component is being multiplied by the horizontal comp unit vector.

So you might see something like that, where that's the unit vector plus the Y component, 4T^4 + 2T + 1, is multiplied by the vertical unit vector. These are both representing the same thing; it just has a different notation. Sometimes you'll see vector valued functions with an arrow on top to make it explicit that this is a vector valued function.

Sometimes you'll just hear people say, "Well, let H be a vector valued function," and they might not write that arrow on top. So now that we have that out of the way, what we are interested in is, well, let's find the first and second derivatives of H with respect to T.

So let's first take the first derivative H prime of T. Well, as you'll see, that's actually quite straightforward. You're just going to take the respective components with respect to T. So the X component with respect to T, if you were to take the derivative, what are you going to get?

Well, we're going to use the power rule right over here: 5 * the negative 1, or time the negative, you're going to get -5 * T^(5 - 1) power, so T^4. The derivative with respect to T of -6, well that's just zero. So that's the rate of change of the X component with respect to T.

Now we go to the Y component, so we're going to do the same thing. The derivative with respect to T is going to be, and once again we just use the power rule. 4 * 4 is 16, T^3. The derivative of 2T is just 2, and then the derivative of a constant, well, that's zero; we've already seen that.

So there you have it. This is the rate of change of the X component with respect to T, this is the rate of change of the Y component with respect to T. One way to do it, and you know a vector can represent many, many, many different things, but the type of a two-dimensional vector like this, you could imagine this being H of T being a position vector in two dimensions.

If you're looking at the rate of change of position with respect to time, well then this would be the velocity vector. If we were to take the derivative of this with respect to time, well, we're going to get the acceleration vector.

So if we say H prime prime of T, what is that going to be equal to? H prime prime of T, well we just apply the power rule again. So 4 * -5 is equal to -20 T^(4 - 1), so T^3. Then we have 3 * 16 is 48 T^2, and then the derivative of 2 is just zero.

So there you have it. For any, if you view T as time, for any time, if you view this one as position, this one as velocity, and this is acceleration, you could, this would now give you the position, velocity, and acceleration. But it's important to realize that these vectors could represent anything of a two-dimensional nature.

More Articles

View All
AC analysis intro 2
So in the last video, we started working on the analysis of an RLC circuit that had a forcing function. The math for doing that gets really hard, and so what we decided to do was see what happens if we limit ourselves to using just sinusoidal inputs that …
Jumping Ship | Yukon River Run
[Music] Joshy, where you think you can run this raft yourself? In all honesty, getting that thing down with one person’s next impossible. But, uh, I need to get this raft down river. Maybe I’ll switch over; I could use the help. That would be great. Bot…
The BIGGEST LIES in Real Estate
What’s up you guys, it’s Graham here! So let’s discuss him, the biggest lies that were told in real estate because there’s definitely a lot of misconceptions out there. Especially when everyone has their own opinion with what they feel is best, it ends up…
Exploring the Ocean for Sixty Years | Best Job Ever
Even if you’ve never seen the ocean or touch the ocean, the ocean touches you with every breath you take, every trough of water you drink. It’s the ocean. It’s the ocean for me. Being a biologist, just following my heart has led me to some fascinating pl…
Labeling voltages
In this video, I want to do a demonstration of the process of labeling voltages on a circuit that we’re about to analyze. This is something that sometimes causes stress or confusion, and I want to just basically try to get out of that stressful situation.…
Christianity 101 | National Geographic
About 2,000 years ago, in a far-flung province in the Middle East, a man emerged from the desert with a message—one that would radically alter the course of world events and come to define the lives of billions. Christianity is a monotheistic religion th…