yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Second derivatives (vector-valued functions) | Advanced derivatives | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

So I have a vector valued function H here. When I say vector valued, it means you give me a T; it's a function of T. So you give me a T, I'm not just going to give you a number; I'm going to give you a vector. As we'll see, you're going to get a two-dimensional vector.

You could view this as the X component of the vector and the Y component of the vector. You are probably familiar by now that there's multiple notations for even a two-dimensional vector. For example, you could use what's often viewed as engineering notation here, where the X component is being multiplied by the horizontal comp unit vector.

So you might see something like that, where that's the unit vector plus the Y component, 4T^4 + 2T + 1, is multiplied by the vertical unit vector. These are both representing the same thing; it just has a different notation. Sometimes you'll see vector valued functions with an arrow on top to make it explicit that this is a vector valued function.

Sometimes you'll just hear people say, "Well, let H be a vector valued function," and they might not write that arrow on top. So now that we have that out of the way, what we are interested in is, well, let's find the first and second derivatives of H with respect to T.

So let's first take the first derivative H prime of T. Well, as you'll see, that's actually quite straightforward. You're just going to take the respective components with respect to T. So the X component with respect to T, if you were to take the derivative, what are you going to get?

Well, we're going to use the power rule right over here: 5 * the negative 1, or time the negative, you're going to get -5 * T^(5 - 1) power, so T^4. The derivative with respect to T of -6, well that's just zero. So that's the rate of change of the X component with respect to T.

Now we go to the Y component, so we're going to do the same thing. The derivative with respect to T is going to be, and once again we just use the power rule. 4 * 4 is 16, T^3. The derivative of 2T is just 2, and then the derivative of a constant, well, that's zero; we've already seen that.

So there you have it. This is the rate of change of the X component with respect to T, this is the rate of change of the Y component with respect to T. One way to do it, and you know a vector can represent many, many, many different things, but the type of a two-dimensional vector like this, you could imagine this being H of T being a position vector in two dimensions.

If you're looking at the rate of change of position with respect to time, well then this would be the velocity vector. If we were to take the derivative of this with respect to time, well, we're going to get the acceleration vector.

So if we say H prime prime of T, what is that going to be equal to? H prime prime of T, well we just apply the power rule again. So 4 * -5 is equal to -20 T^(4 - 1), so T^3. Then we have 3 * 16 is 48 T^2, and then the derivative of 2 is just zero.

So there you have it. For any, if you view T as time, for any time, if you view this one as position, this one as velocity, and this is acceleration, you could, this would now give you the position, velocity, and acceleration. But it's important to realize that these vectors could represent anything of a two-dimensional nature.

More Articles

View All
The Solar System -- our home in space
The solar system, our home in space. We live in a peaceful part of the Milky Way. Our home is the solar system, a four and a half billion year old formation that races around the galactic center at 200,000 kilometers per hour and circles it once every 250…
Multivariable maxima and minima
When you have a multi-variable function, something that takes in multiple different input values, and let’s say it’s just outputting a single number. A very common thing you want to do with an animal like this is maximize it. Maximize it, and what this me…
15 Smartest Ways to Spend Your Money
Now, Alexir, the dumbest thing we can do with money is to spend it impulsively, right? And to spend it beyond our means. But there are four smart factors to spending money, and if your expenses fit into these factors, well, you’re spending smartly. First…
Shower Thoughts: True Facts That Sound Completely Made up
Have you ever paused to think about how one of the most famous sentences of all time doesn’t make grammatical sense? Well, because we all apparently heard it wrong and continue to say it wrong, according to the man himself, Neil Armstrong, what he did say…
Not The Confederate Flag?
This is not the confederate national flag: When the United States split in twain during the Civil War, this was the first flag her rebel half used: The Bonnie Blue, which she copied from the Republic of West Florida. No, really. This country existed: a bo…
Jesus Christ and Christianity | World History | Khan Academy
We’re now going to talk about the beginnings of one of the most important religions in human history, and even today the largest religion on earth, and that of course is Christianity. The central figure in Christianity is Jesus Christ, and the term “Chris…