yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Second derivatives (vector-valued functions) | Advanced derivatives | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

So I have a vector valued function H here. When I say vector valued, it means you give me a T; it's a function of T. So you give me a T, I'm not just going to give you a number; I'm going to give you a vector. As we'll see, you're going to get a two-dimensional vector.

You could view this as the X component of the vector and the Y component of the vector. You are probably familiar by now that there's multiple notations for even a two-dimensional vector. For example, you could use what's often viewed as engineering notation here, where the X component is being multiplied by the horizontal comp unit vector.

So you might see something like that, where that's the unit vector plus the Y component, 4T^4 + 2T + 1, is multiplied by the vertical unit vector. These are both representing the same thing; it just has a different notation. Sometimes you'll see vector valued functions with an arrow on top to make it explicit that this is a vector valued function.

Sometimes you'll just hear people say, "Well, let H be a vector valued function," and they might not write that arrow on top. So now that we have that out of the way, what we are interested in is, well, let's find the first and second derivatives of H with respect to T.

So let's first take the first derivative H prime of T. Well, as you'll see, that's actually quite straightforward. You're just going to take the respective components with respect to T. So the X component with respect to T, if you were to take the derivative, what are you going to get?

Well, we're going to use the power rule right over here: 5 * the negative 1, or time the negative, you're going to get -5 * T^(5 - 1) power, so T^4. The derivative with respect to T of -6, well that's just zero. So that's the rate of change of the X component with respect to T.

Now we go to the Y component, so we're going to do the same thing. The derivative with respect to T is going to be, and once again we just use the power rule. 4 * 4 is 16, T^3. The derivative of 2T is just 2, and then the derivative of a constant, well, that's zero; we've already seen that.

So there you have it. This is the rate of change of the X component with respect to T, this is the rate of change of the Y component with respect to T. One way to do it, and you know a vector can represent many, many, many different things, but the type of a two-dimensional vector like this, you could imagine this being H of T being a position vector in two dimensions.

If you're looking at the rate of change of position with respect to time, well then this would be the velocity vector. If we were to take the derivative of this with respect to time, well, we're going to get the acceleration vector.

So if we say H prime prime of T, what is that going to be equal to? H prime prime of T, well we just apply the power rule again. So 4 * -5 is equal to -20 T^(4 - 1), so T^3. Then we have 3 * 16 is 48 T^2, and then the derivative of 2 is just zero.

So there you have it. For any, if you view T as time, for any time, if you view this one as position, this one as velocity, and this is acceleration, you could, this would now give you the position, velocity, and acceleration. But it's important to realize that these vectors could represent anything of a two-dimensional nature.

More Articles

View All
Why Do We Laugh?
I was having dinner with two friends recently. They’re a couple, but as we sat down to eat, I could tell there was tension between them. They weren’t speaking to each other for the first 10 minutes of the meal and gave short answers to all my questions. A…
What are SMART goals and why do they matter? | Financial goals | Financial Literacy | Khan Academy
So let’s talk a little bit about smart goals when it comes to your finances. When I say smart goals, I’m not just saying well-thought-out or intelligent goals, although I guess it could be that. I’m talking about the acronym S-M-A-R-T: smart goals. Now, …
Band of Sisters | Explorer
The Peshmerga number roughly 150,000, and they’re revered in Kurdish society. When ISIS first attacked, they were taken by surprise and driven back in some places. Since those early days, they’ve transformed themselves into a powerful fighting force—one o…
Know Why You're Starting a Company - Danae Ringelmann of Indiegogo
Know your why. What I mean by this is, why are you starting this company? What problem are you trying to solve? And why do you care so much? If your reason for being is not authentic to your core, chances of you failing will actually go way up. The reaso…
2017 Berkshire Hathaway Annual Meeting (Full Version)
Thank you and good morning. Duh, that’s Charlie. I’m Warren. You can tell us apart because, uh, he can hear and I can see. That’s why we, uh, work together so well. We usually have our specialty. Uh, I’d like to welcome you to, uh, we got a lot of out-of…
True Signs You're a Winner or LOSER | Kevin O'Leary
I can sit in a room with somebody for 15 minutes and know if I’ve got a winner or not, and 99% of the time I’m right. So, I listen to the gut, and I listen to the person, I listen to the plan. I know it’s gonna work or it isn’t; I just know I’m that good.…