yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Second derivatives (vector-valued functions) | Advanced derivatives | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

So I have a vector valued function H here. When I say vector valued, it means you give me a T; it's a function of T. So you give me a T, I'm not just going to give you a number; I'm going to give you a vector. As we'll see, you're going to get a two-dimensional vector.

You could view this as the X component of the vector and the Y component of the vector. You are probably familiar by now that there's multiple notations for even a two-dimensional vector. For example, you could use what's often viewed as engineering notation here, where the X component is being multiplied by the horizontal comp unit vector.

So you might see something like that, where that's the unit vector plus the Y component, 4T^4 + 2T + 1, is multiplied by the vertical unit vector. These are both representing the same thing; it just has a different notation. Sometimes you'll see vector valued functions with an arrow on top to make it explicit that this is a vector valued function.

Sometimes you'll just hear people say, "Well, let H be a vector valued function," and they might not write that arrow on top. So now that we have that out of the way, what we are interested in is, well, let's find the first and second derivatives of H with respect to T.

So let's first take the first derivative H prime of T. Well, as you'll see, that's actually quite straightforward. You're just going to take the respective components with respect to T. So the X component with respect to T, if you were to take the derivative, what are you going to get?

Well, we're going to use the power rule right over here: 5 * the negative 1, or time the negative, you're going to get -5 * T^(5 - 1) power, so T^4. The derivative with respect to T of -6, well that's just zero. So that's the rate of change of the X component with respect to T.

Now we go to the Y component, so we're going to do the same thing. The derivative with respect to T is going to be, and once again we just use the power rule. 4 * 4 is 16, T^3. The derivative of 2T is just 2, and then the derivative of a constant, well, that's zero; we've already seen that.

So there you have it. This is the rate of change of the X component with respect to T, this is the rate of change of the Y component with respect to T. One way to do it, and you know a vector can represent many, many, many different things, but the type of a two-dimensional vector like this, you could imagine this being H of T being a position vector in two dimensions.

If you're looking at the rate of change of position with respect to time, well then this would be the velocity vector. If we were to take the derivative of this with respect to time, well, we're going to get the acceleration vector.

So if we say H prime prime of T, what is that going to be equal to? H prime prime of T, well we just apply the power rule again. So 4 * -5 is equal to -20 T^(4 - 1), so T^3. Then we have 3 * 16 is 48 T^2, and then the derivative of 2 is just zero.

So there you have it. For any, if you view T as time, for any time, if you view this one as position, this one as velocity, and this is acceleration, you could, this would now give you the position, velocity, and acceleration. But it's important to realize that these vectors could represent anything of a two-dimensional nature.

More Articles

View All
3-D Technology Offers Clues to How Egypt’s Pyramids Were Built | Nat Geo Live
My archaeological team actually is very unique because I’m the only ecologist, and the other members are computer scientists, software engineers, and applied mathematicians. We are like a crime scene investigation, patiently documenting with the latest te…
Iceland’s Glaciers - 360 | Into Water
Glaciers are natural wonders. They’re shapeshifters, wild and alive. They hold the keys to the secrets of humanity’s past and humanity’s future. I’m Dr. M. Jackson. I am a geographer, a climatologist, and a National Geographic Explorer. For over a thousa…
Work is the set of things that you have to do, that you don't want to do
What would you say the key differences are between success and failure? What does one startup have versus one that doesn’t make it? Uh, luck is a big one. Timing is everything, but you kind of make your own luck, you know, if you stay at it long enough. …
How to quickly get out of a rut
So pretend you’re this guy, and you were really productive earlier the month. In fact, you are kind of killing it. You’re reading lots of books, hitting the gym consistently, and actually getting your work in on time. But then something happened. Maybe y…
How minimum wage hurts workers (while profit and competition help them)
So this is a video primarily for—to be serious—you’ve seemed quite taken aback when I said that minimum wage regulations are usually harmful to workers. Now, this is a subject that’s already been addressed several times on YouTube, but I think it bears re…
How To Get Rich According To Jeff Bezos
There are a million ways to make $1,000,000. And this is how Jeff Bezos did it. He needs no introduction. Right. So let’s just cut straight to the chase. Customers have the money, not the competition. Well, many people think about the competition. Bezos …