yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Second derivatives (vector-valued functions) | Advanced derivatives | AP Calculus BC | Khan Academy


3m read
·Nov 11, 2024

So I have a vector valued function H here. When I say vector valued, it means you give me a T; it's a function of T. So you give me a T, I'm not just going to give you a number; I'm going to give you a vector. As we'll see, you're going to get a two-dimensional vector.

You could view this as the X component of the vector and the Y component of the vector. You are probably familiar by now that there's multiple notations for even a two-dimensional vector. For example, you could use what's often viewed as engineering notation here, where the X component is being multiplied by the horizontal comp unit vector.

So you might see something like that, where that's the unit vector plus the Y component, 4T^4 + 2T + 1, is multiplied by the vertical unit vector. These are both representing the same thing; it just has a different notation. Sometimes you'll see vector valued functions with an arrow on top to make it explicit that this is a vector valued function.

Sometimes you'll just hear people say, "Well, let H be a vector valued function," and they might not write that arrow on top. So now that we have that out of the way, what we are interested in is, well, let's find the first and second derivatives of H with respect to T.

So let's first take the first derivative H prime of T. Well, as you'll see, that's actually quite straightforward. You're just going to take the respective components with respect to T. So the X component with respect to T, if you were to take the derivative, what are you going to get?

Well, we're going to use the power rule right over here: 5 * the negative 1, or time the negative, you're going to get -5 * T^(5 - 1) power, so T^4. The derivative with respect to T of -6, well that's just zero. So that's the rate of change of the X component with respect to T.

Now we go to the Y component, so we're going to do the same thing. The derivative with respect to T is going to be, and once again we just use the power rule. 4 * 4 is 16, T^3. The derivative of 2T is just 2, and then the derivative of a constant, well, that's zero; we've already seen that.

So there you have it. This is the rate of change of the X component with respect to T, this is the rate of change of the Y component with respect to T. One way to do it, and you know a vector can represent many, many, many different things, but the type of a two-dimensional vector like this, you could imagine this being H of T being a position vector in two dimensions.

If you're looking at the rate of change of position with respect to time, well then this would be the velocity vector. If we were to take the derivative of this with respect to time, well, we're going to get the acceleration vector.

So if we say H prime prime of T, what is that going to be equal to? H prime prime of T, well we just apply the power rule again. So 4 * -5 is equal to -20 T^(4 - 1), so T^3. Then we have 3 * 16 is 48 T^2, and then the derivative of 2 is just zero.

So there you have it. For any, if you view T as time, for any time, if you view this one as position, this one as velocity, and this is acceleration, you could, this would now give you the position, velocity, and acceleration. But it's important to realize that these vectors could represent anything of a two-dimensional nature.

More Articles

View All
Elon Musk On Fear
One thing I really like about you is you are unusually fearless and willing to go in the face of other people telling you something that’s crazy. I know a lot of pretty crazy people; you still stand out. Uh, where does that come from, or how do you think …
The Millionaire Investing Advice For Teenagers
What’s up you guys? It’s Graham here. So I have to say this is probably one of the most requested topics I have ever consistently got on my channel, and it only took me two and a half years to finally make this video. So for anyone who’s ever commented a…
Generational and lifecycle effects on political ideology | US government and civics | Khan Academy
What we’re going to talk about in this video is how political and cultural events might have an influence on someone’s political ideology. So let’s make this a little bit concrete. Political scientists will sometimes have various classifications for thes…
CONTACT LIGHT: The Story of Apollo 11
Okay, all flight controllers gonna go for landing retro. Oh, I don’t gel. The 20th of 2019 marked the 50th anniversary of mankind’s most treacherous journey when Apollo 11 astronauts Neil Armstrong and Buzz Aldrin first touched the lunar surface. Over ha…
Invalid | Vocabulary | Khan Academy
Hello wordsmiths! The word we’re featuring in this video is invalid. That’s right, it’s not true—or rather, that’s what it means: incorrect, false, not accepted. It’s an adjective. It comes from Latin, where the prefix “in” means not and the word “valiru…
Going Bankrupt | The Car Market Bubble Just Collapsed
What’s up, guys? It’s Graham here. So we have to talk about the car market bubble because even though you probably thought that 2022 couldn’t possibly get any worse, it was found that car repos are exploding. That’s a bad omen. See, for the last few years…