yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Complex exponentials spin


4m read
·Nov 11, 2024

In the last video, we did a quick review of the exponential and what it means. Then we looked and figured out what the magnitude of an exponential is. The magnitude is equal to one. Now we’re going to look closely at this complex exponential as it represents a part of a cosine.

Now we're going to keep combining some of our ideas from the last couple of videos. You remember, one of the things we did was we used Euler's formula and turned it inside out. We developed an expression for cosine. So, if I say cosine of theta, I can say that equals 1/2 times e to the J theta plus e to the minus J theta. This is cosine of theta expressed as two separate exponentials.

Now we're going to take a really special step. I'm going to put in an argument right here of time. I'm going to say cosine of Omega T. T is time, and this shape here, this symbol here is the lowercase Omega from the Greek alphabet, and that's the frequency. So, time is in units of seconds, and Omega is a frequency, so it's in units of one/seconds. That's the units of frequency or per seconds, and when these multiply together, we get a dimensionless number right here.

We can take the cosine of a dimensionless number. So, what is this equal to? This equals 1/2 * e to the J Omega T plus e to the minus J Omega T. When we make T the argument of the cosine here, T is the stuff that keeps going up and up and up. The number T gets just gets bigger all the time, and so we ended up with a cosine waveform.

I'll just make a bad cosine looking thing here; that’s what a cosine looks like, and it keeps going and going and going. So, we have an idea of what a cosine wave looks like. The frequency determines how fast this goes up and down or how often it goes up and down. But now what I want to do is I want to look at a really special thing.

I want to look at what this thing right here, what is this thing e to the J Omega T? What we see is this cosine here is made of two of these things. So, whatever these things are, I can make a cosine out of them. Now we're going to look really carefully at e to the J Omega T.

What we just reviewed was that this is a complex number. Let's draw that complex number. So we're going to put a number out here; we know it falls on the unit circle. We know its angle is whatever is multiplying the J up in this exponent. Whatever is up in the exponent is the angle of this thing. So, this angle right here is Omega T, and we know the magnitude of this is, as we decided before, the magnitude is one. That's why it falls on the unit circle.

Okay, so now look at this. Here's this number T that's determining the angle, and that means what that means is that the angle is increasing with time. If time is equal to zero, the point is right here at time equals zero because the angle is zero. As time proceeds, the angle keeps starting to grow and grow, and it basically keeps growing. It keeps going; it comes back to here after Omega T equals 2 pi. Then what happens? It goes and keeps going around it again, and this basically goes along for as long as time goes along.

So here's this complex number moving along the unit circle in time over and over and over again. This is a number that is rotating. The number is rotating, so I can write here e to the J Omega T, and I know that because time's up here, I know it's rotating in time.

Now I'm going to put a different number on there. Let's put it over here, say, well, let's actually start this number at zero, and I'm going to call this number e to the minus J Omega T. What does that number look like? That's this guy here, that's this one here; we’ll make him orange. So, at time equals zero, it's e to the zero or one, just as we would expect.

Now, as time gets bigger, the angle, the thing multiplying J is minus Omega T, and so the angle is becoming more and more negative. So after a little bit of time, it's here, and after a little bit more time, it's here. What we notice is it keeps rotating this way. This is what happens when you have e to the minus J Omega T; you rotate in this direction, and it keeps going and going and going.

So these two numbers are pretty similar in behavior, except one rotates counterclockwise and the other rotates clockwise in our coordinate system, which is the complex plane. So in summary, if you see either of these shapes, e to the plus J Omega T or e to the minus J Omega T, what pops into your head is a number that spins.

For me, the simple idea is I have a number here, and I have a number here. They both spin in a complex space. To represent those in mathematical notation, I need this kind of notation here, which is a little bit awkward, but as I get used to it, e to the J Omega T is a spinning number, e to the minus J Omega T is a spinning number. This is an amazingly powerful idea, and we'll be able to describe every signal that happens using these kinds of terms.

More Articles

View All
Conclusion for a two sample t test using a P value
We’re told a sociologist studying fertility in Argentina and Bolivia wanted to test if there was a difference in the average number of babies women in each country have. The sociologist obtained a random sample of women from each country. Here are the res…
Why invest in yourself? | Careers and education | Financial Literacy | Khan Academy
This chart right over here is at bls.gov. BLS stands for the Bureau of Labor Statistics, and in a pretty interesting trend here, it shows that the higher the degree level that someone gets, it is associated with higher median weekly earnings. Right? Becau…
The Rules for Rulers
[Ominous music plays] Do you want to rule? Do you see the problems in your country and know how to fix them? If only you had the power to do so. Well, you’ve come to the right place. But before we begin this lesson in political power, ask yourself: why d…
Announcing Work at a Startup
Alright guys, so we are here today to talk about work at a startup. Let’s really quickly do some introductions. So Jared, why don’t you start? Hey, I’m Jared. I’m a partner here at YC. The way I got into YC was I did a YC company in one of the earliest b…
The Strange and Wonderful World of the 'Snail Wrangler' | Short Film Showcase
I always like to ask my audience, when you think about land snails, what’s the very first word that pops into your head? Just one word. Hello? Yes, what else? Slimy? What else? Holes in your knees? So, damage to your garden. A little more background on …
2021 Goals: How to be Better with Money
[Music] Hey guys, welcome back to the channel. First things first, happy new year! Hope you guys are having a great time, having a bit of time off just to rest and recover and regenerate after a pretty disastrous year that was 2020. But that’s actually k…