yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

2015 AP Calculus AB 6a | AP Calculus AB solved exams | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Consider the curve given by the equation (y^3 - xy = 2). It can be shown that the derivative of (y) with respect to (x) is equal to (\frac{y}{3y^2 - x}).

All right, write an equation for the line tangent to the curve at the point ((-1, 1)).

So, we could figure out the equation for the line if we know the slope of the line and we know a point that it goes through. So that should be enough to figure out the equation of the line.

The line's going to have a form (y = mx + b). (m) is the slope and is going to be equal to (\frac{dy}{dx}) at that point. We know that that's going to be equal to, let's see, (y) is 1 when (x) is -1.

So, (y = 1), so (\frac{1}{3y^2}) - (x), when (y = 1), since (x = -1), we can substitute this in. So this is (\frac{1}{3 \cdot 1^2}) which is (3 - (-1)).

So, this is the same thing as (3 + 1) and so this is equal to (\frac{1}{4}).

And so, the equation of our line is going to be (y = \frac{1}{4}x + b).

Now we need to solve for (b) and we know that the point ((-1, 1)) is on the line. So we can use that information to solve for (b).

This line is tangent to the curve, so it includes this point and only that point. That's what has in common with the curve.

So, when (y = 1) when (x = -1 + b), and so we have (1 = -\frac{1}{4} + b).

You add (\frac{1}{4}) to both sides and you get (b) is equal to, we could either write it as (1) and (\frac{1}{4}) which is equal to (\frac{5}{4}) which is equal to (1.25).

We could write it any of those ways.

So the equation for the line tangent to the curve at this point is (y = \frac{1}{4}x + \frac{5}{4}) and we're done, at least with that part of the problem.

More Articles

View All
How to Build An MVP | Startup School
[Music] All right, uh today I’d like to talk to you about how to build an MVP or a minimum viable product. So if you haven’t seen this before, this is a meme that we love to talk about when trying to help founders with their MVP. It’s called the midwit me…
Sensory processing and the brain | Cells and organisms | Middle school biology | Khan Academy
As humans, we have a lot of senses that we put to use on a regular basis. They include sight, smell, taste, touch, and hearing. But have you ever wondered how it all works? How do you look at a beautiful painting in an art museum, or smell the rain outsid…
Senate filibusters and cloture
What we are going to do in this video is discuss the United States Senate. We’re gonna focus not only on areas where the Senate has special influence where the House of Representatives does not, but we’ll also focus on how the Senate actually conducts bus…
Khan Academy Ed Talks with Adam Green, PhD - Wednesday, August 18
Hello and welcome to Ed Talks with Khan Academy, where we talk education with a variety of experts in the field. Today, I am excited to talk to my own teammate Dr. Adam Green about new content that we have just released on Khan Academy for the start of th…
The Story of Nietzche: The Man Who Killed God
God is dead. God remains dead. And we have killed him. The words of Friedrich Nietzsche have echoed through generations. Although many know the statement and even quote it, only a few people truly understand its meaning. Because, just like much of Nietzsc…
Listening for Aliens | StarTalk
[Music] We’re all hoping that there’s some intelligent aliens trying to talk to us, sending us signals. But just because we want it to be true, doesn’t mean every radio signal from space that we can’t immediately understand must be some intelligent alien…