yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

2015 AP Calculus AB 6a | AP Calculus AB solved exams | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Consider the curve given by the equation (y^3 - xy = 2). It can be shown that the derivative of (y) with respect to (x) is equal to (\frac{y}{3y^2 - x}).

All right, write an equation for the line tangent to the curve at the point ((-1, 1)).

So, we could figure out the equation for the line if we know the slope of the line and we know a point that it goes through. So that should be enough to figure out the equation of the line.

The line's going to have a form (y = mx + b). (m) is the slope and is going to be equal to (\frac{dy}{dx}) at that point. We know that that's going to be equal to, let's see, (y) is 1 when (x) is -1.

So, (y = 1), so (\frac{1}{3y^2}) - (x), when (y = 1), since (x = -1), we can substitute this in. So this is (\frac{1}{3 \cdot 1^2}) which is (3 - (-1)).

So, this is the same thing as (3 + 1) and so this is equal to (\frac{1}{4}).

And so, the equation of our line is going to be (y = \frac{1}{4}x + b).

Now we need to solve for (b) and we know that the point ((-1, 1)) is on the line. So we can use that information to solve for (b).

This line is tangent to the curve, so it includes this point and only that point. That's what has in common with the curve.

So, when (y = 1) when (x = -1 + b), and so we have (1 = -\frac{1}{4} + b).

You add (\frac{1}{4}) to both sides and you get (b) is equal to, we could either write it as (1) and (\frac{1}{4}) which is equal to (\frac{5}{4}) which is equal to (1.25).

We could write it any of those ways.

So the equation for the line tangent to the curve at this point is (y = \frac{1}{4}x + \frac{5}{4}) and we're done, at least with that part of the problem.

More Articles

View All
What if You Were Born in Space?
Hey, Vsauce. Michael here. How many people are in space right now? Dot com tells us that the answer is 6. Ever since the first person reached outer space 52 years ago, more than 500 humans have left Earth, and they’ve gone as far as the moon, an impressiv…
Analyzing related rates problems: expressions | AP Calculus AB | Khan Academy
The base ( b ) of the triangle is decreasing at a rate of 13 meters per hour, and the height ( h ) of the triangle is increasing at a rate of 6 meters per hour. At a certain instant ( t_0 ), the base is 5 meters and the height is 1 meter. What is the rat…
Ask me anything with Sal Khan: March 24 | Homeroom with Sal
Hello everyone. It looks like we are live, and we’re getting better at starting on time. Thanks for joining us at our daily live stream at our new time that we started yesterday, now today at 12 Pacific through Eastern. Many people are joining from all ov…
How to Land a Million Dollar Deal on Shark Tank Ask Mr. Wonderful #24 Kevin O'Leary & Anne Wojcicki
Hey, Mr. Wonderful here, but I’m in the kitchen, so we don’t need Mr. Wonderful; we need Chef Wonderful. How are we gonna get them? Eg, well, um, but there’s no Chef Wonderful. You know what? I want to talk about Mother’s Day. It’s coming up, and this ye…
Multistep reaction energy profiles | Kinetics | AP Chemistry | Khan Academy
Let’s consider a reaction with the following multi-step mechanism. In step 1, A reacts with BC to form AC plus B, and in step 2, AC reacts with D to form A plus CD. If we add the two steps of our mechanism together, we can find the balanced equation for …
Live Below Your Means for Freedom
Any other big things you should avoid other than renting out your time? Yeah, there are two tweets that I put out that are related. So the first one is talking about queer or something like how your lifestyle, you know, has to upgrade. It shouldn’t get u…