yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

2015 AP Calculus AB 6a | AP Calculus AB solved exams | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Consider the curve given by the equation (y^3 - xy = 2). It can be shown that the derivative of (y) with respect to (x) is equal to (\frac{y}{3y^2 - x}).

All right, write an equation for the line tangent to the curve at the point ((-1, 1)).

So, we could figure out the equation for the line if we know the slope of the line and we know a point that it goes through. So that should be enough to figure out the equation of the line.

The line's going to have a form (y = mx + b). (m) is the slope and is going to be equal to (\frac{dy}{dx}) at that point. We know that that's going to be equal to, let's see, (y) is 1 when (x) is -1.

So, (y = 1), so (\frac{1}{3y^2}) - (x), when (y = 1), since (x = -1), we can substitute this in. So this is (\frac{1}{3 \cdot 1^2}) which is (3 - (-1)).

So, this is the same thing as (3 + 1) and so this is equal to (\frac{1}{4}).

And so, the equation of our line is going to be (y = \frac{1}{4}x + b).

Now we need to solve for (b) and we know that the point ((-1, 1)) is on the line. So we can use that information to solve for (b).

This line is tangent to the curve, so it includes this point and only that point. That's what has in common with the curve.

So, when (y = 1) when (x = -1 + b), and so we have (1 = -\frac{1}{4} + b).

You add (\frac{1}{4}) to both sides and you get (b) is equal to, we could either write it as (1) and (\frac{1}{4}) which is equal to (\frac{5}{4}) which is equal to (1.25).

We could write it any of those ways.

So the equation for the line tangent to the curve at this point is (y = \frac{1}{4}x + \frac{5}{4}) and we're done, at least with that part of the problem.

More Articles

View All
Adjectives and commas | Adjectives | Khan Academy
Hey Garans, hey Paige, hi David. Hey, so Paige, I went to the grocery store yesterday and I got this apple. Okay? I put it in the fridge, uh, and this morning when I opened the fridge, the apple was all like gross and sticky and mushy. I really want to w…
Newton's second law calculations | Physics | Khan Academy
Let’s solve a couple of problems on Newton’s Second Law. Here’s the first one: we have an elevator which is moving up, and let’s say the mass of the elevator, including the passenger inside, is 1,000 kg. Now, if the force, the tension force of the cable,…
Personalized Stories Starring Your Kids: Khanmigo's Craft a Story! | Bedtime stories for kids
Hi parents! Are you looking to put a fresh spin on story time, or maybe you want to make bedtime more fun, engaging, and personalized? I’ve got something you’re going to love! Meet K Migo’s “Craft a Story” feature. Let me show you how it works. First, we…
Bringing the Meat to Higher Ground | The Great Human Race
Can’t be too greedy right now. In the midday heat of East Africa, lions often retreat to the shade and return to their kill when the sun starts to set. This lion’s gonna come back. I wish we could take the height and everything else. I can’t get it all…
Top 3 Tips That Changed My Life Forever
[Music] When I was graduating college, my mother came to the graduation. She said, “I’ve got great news! I’m coming to the graduation, um, but, um, I also have some other news: no more checks.” I said, “What do you mean?” Because she’d been paying for co…
Why Founders Shouldn't Think Like Investors
They measured 60 times, cut once. The cut didn’t go well, and some were like, “Oh, do I measure 60 more?” Like, [Music] what? All right, this is Dalton plus Michael, and today we’re going to talk about why Founders shouldn’t think like VCs. Shocking! I wo…