yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

2015 AP Calculus AB 6a | AP Calculus AB solved exams | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Consider the curve given by the equation (y^3 - xy = 2). It can be shown that the derivative of (y) with respect to (x) is equal to (\frac{y}{3y^2 - x}).

All right, write an equation for the line tangent to the curve at the point ((-1, 1)).

So, we could figure out the equation for the line if we know the slope of the line and we know a point that it goes through. So that should be enough to figure out the equation of the line.

The line's going to have a form (y = mx + b). (m) is the slope and is going to be equal to (\frac{dy}{dx}) at that point. We know that that's going to be equal to, let's see, (y) is 1 when (x) is -1.

So, (y = 1), so (\frac{1}{3y^2}) - (x), when (y = 1), since (x = -1), we can substitute this in. So this is (\frac{1}{3 \cdot 1^2}) which is (3 - (-1)).

So, this is the same thing as (3 + 1) and so this is equal to (\frac{1}{4}).

And so, the equation of our line is going to be (y = \frac{1}{4}x + b).

Now we need to solve for (b) and we know that the point ((-1, 1)) is on the line. So we can use that information to solve for (b).

This line is tangent to the curve, so it includes this point and only that point. That's what has in common with the curve.

So, when (y = 1) when (x = -1 + b), and so we have (1 = -\frac{1}{4} + b).

You add (\frac{1}{4}) to both sides and you get (b) is equal to, we could either write it as (1) and (\frac{1}{4}) which is equal to (\frac{5}{4}) which is equal to (1.25).

We could write it any of those ways.

So the equation for the line tangent to the curve at this point is (y = \frac{1}{4}x + \frac{5}{4}) and we're done, at least with that part of the problem.

More Articles

View All
Mughal rule in India | 1450 - Present | World History | Khan Academy
As we’ve talked about in other videos, by the time we get into the 15th century, Timur’s Persia and Central Asia has been fragmented. You have many of Timur’s descendants with their own kingdoms, especially in Central Asia. In 1483, in the Central Asian c…
Safari Live - Day 15 | National Geographic
Watching, maybe they will be the only things that stick around; but if the wind picks up, they may also blow. Hey, my name is Taylor, and on camera with me today is Sebastian. Well, hopefully, our drive is going to be filled with a couple more animals tha…
Genius: Aretha Chain of Fools Trailer | National Geographic
[Applause] [Music] I’m writing a new song. It’s gonna hit you hard. I thought you were my man. It’ll get under your skin, right down to the ball. It’s gonna be a whole new vibe that brings people together. I’m just unlinking your chains. Well, you only go…
Cell parts and their functions | Cells and organisms | Middle school biology | Khan Academy
So let’s imagine this scenario. It’s cold outside, and we want to make a nice hot bowl of chicken noodle soup. Well, we’d probably need to get the ingredients first. We need some chicken bones to give the broth that distinct chicken flavor, some noodles t…
Subterranean Treasure | Primal Survivor
These environments can look dry and barren, but they can be useful in a survival situation if you know how to read the landscape. This solid granite gorge has been carved out by water, and just look at the walls; they’ve been smoothed and polished by mill…
WALL STREET LOSSES! - The TRUTH Behind GameStop, WallStreetBets & Robinhood | Kevin O'Leary
Everybody had just completely discounted. Thought it didn’t matter, and the Robin Hood investors, “Ah, we don’t care about them; they’re too young, they have no money.” Well, that’s not how it is. I can’t stand the arrogance of sophisticated Wall Street i…