yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

2015 AP Calculus AB 6a | AP Calculus AB solved exams | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Consider the curve given by the equation (y^3 - xy = 2). It can be shown that the derivative of (y) with respect to (x) is equal to (\frac{y}{3y^2 - x}).

All right, write an equation for the line tangent to the curve at the point ((-1, 1)).

So, we could figure out the equation for the line if we know the slope of the line and we know a point that it goes through. So that should be enough to figure out the equation of the line.

The line's going to have a form (y = mx + b). (m) is the slope and is going to be equal to (\frac{dy}{dx}) at that point. We know that that's going to be equal to, let's see, (y) is 1 when (x) is -1.

So, (y = 1), so (\frac{1}{3y^2}) - (x), when (y = 1), since (x = -1), we can substitute this in. So this is (\frac{1}{3 \cdot 1^2}) which is (3 - (-1)).

So, this is the same thing as (3 + 1) and so this is equal to (\frac{1}{4}).

And so, the equation of our line is going to be (y = \frac{1}{4}x + b).

Now we need to solve for (b) and we know that the point ((-1, 1)) is on the line. So we can use that information to solve for (b).

This line is tangent to the curve, so it includes this point and only that point. That's what has in common with the curve.

So, when (y = 1) when (x = -1 + b), and so we have (1 = -\frac{1}{4} + b).

You add (\frac{1}{4}) to both sides and you get (b) is equal to, we could either write it as (1) and (\frac{1}{4}) which is equal to (\frac{5}{4}) which is equal to (1.25).

We could write it any of those ways.

So the equation for the line tangent to the curve at this point is (y = \frac{1}{4}x + \frac{5}{4}) and we're done, at least with that part of the problem.

More Articles

View All
Comparing Roman and Byzantine Empires | AP US History | Khan Academy
We already have several videos talking about the Byzantine Empire, which is really just the continuation of the Roman Empire after its fall. They even called themselves the Roman Empire. But what I want to do in this video is a bit of a deep dive to make …
Peter Lynch: How to Find THE BEST Stocks to Buy
You shouldn’t be intimidated. Everyone can do well in the stock market. You have the skills, you have the intelligence. It doesn’t require any education; all you have to have is patience. Do a little research; you’ve got it. Don’t worry about it; don’t pa…
The Illusion Only Some People Can See
I am going to turn myself into an optical illusion by going through this window right here. Ah, (grumbles) huh. Okay, I’m good, oh, not good. I was gonna say I’m good, I’m not good. Okay, so you’re looking at this window and it looks like it’s turning ar…
1997 Berkshire Hathaway Annual Meeting (Full Version)
[Applause] Foreign. I’m Warren Buffett, the chairman of Berkshire Hathaway. As you probably have gathered by now, I had a real problem last night; I was losing my voice almost entirely. I don’t want you to think I lost it cheering for myself this morning …
Bill Ackman Just Made a $1 Billion Bet on This Stock...
Billionaire investor Bill Ackman runs one of the most closely filed portfolios in all finance. The Preferral he runs, named Pershing Square, has assets under management of more than 10 billion and sizable holdings in well-known companies. These companies …
Interpreting equations graphically (example 2) | Mathematics III | High School Math | Khan Academy
Let F of T be ( e^{2T} - 2T^2 ) and H of T be ( 4 - 5T^2 ). The graphs of Y = F(T) and Y = H(T) are shown below. So, Y = F(T) is here in green, so this is really ( Y = e^{2T} - 2T^2 ). We see F(T) right over there, and Y = H(T) is shown in yellow. Alrigh…