yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

2015 AP Calculus AB 6a | AP Calculus AB solved exams | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Consider the curve given by the equation (y^3 - xy = 2). It can be shown that the derivative of (y) with respect to (x) is equal to (\frac{y}{3y^2 - x}).

All right, write an equation for the line tangent to the curve at the point ((-1, 1)).

So, we could figure out the equation for the line if we know the slope of the line and we know a point that it goes through. So that should be enough to figure out the equation of the line.

The line's going to have a form (y = mx + b). (m) is the slope and is going to be equal to (\frac{dy}{dx}) at that point. We know that that's going to be equal to, let's see, (y) is 1 when (x) is -1.

So, (y = 1), so (\frac{1}{3y^2}) - (x), when (y = 1), since (x = -1), we can substitute this in. So this is (\frac{1}{3 \cdot 1^2}) which is (3 - (-1)).

So, this is the same thing as (3 + 1) and so this is equal to (\frac{1}{4}).

And so, the equation of our line is going to be (y = \frac{1}{4}x + b).

Now we need to solve for (b) and we know that the point ((-1, 1)) is on the line. So we can use that information to solve for (b).

This line is tangent to the curve, so it includes this point and only that point. That's what has in common with the curve.

So, when (y = 1) when (x = -1 + b), and so we have (1 = -\frac{1}{4} + b).

You add (\frac{1}{4}) to both sides and you get (b) is equal to, we could either write it as (1) and (\frac{1}{4}) which is equal to (\frac{5}{4}) which is equal to (1.25).

We could write it any of those ways.

So the equation for the line tangent to the curve at this point is (y = \frac{1}{4}x + \frac{5}{4}) and we're done, at least with that part of the problem.

More Articles

View All
Why You Will Marry the Wrong Person
I’ve been asked to talk to you today about an essay that I wrote, uh, for the New York Times, um, last year, which went under a rather dramatic, uh, heading. Uh, it was called “Why You Will Marry the Wrong Person.” And perhaps we can just begin, um, we’re…
Climbing the Polar Bear Fang | Nat Geo Live
( intro music ) Mike Libecki: Sixty-five expeditions and counting and the goal is to do 100 expeditions by 100 years old. This is what I call the Polar Bear Fang. And I’ve been trying to this tower for ten years. For a climber, this is as good as it gets…
How To Be A Financial Minimalist
What’s up you guys? It’s Graham here! So this is a term I really want to make more popular and bring more mainstream, and that would be financial minimalism. It’s a term I thought of last week while trying to find a catchy title for my video where I went …
What To Focus On To Make $1 Million Dollars in 90 days | Grant Cardone
If you had 90 days, 90 days to make a million dollars, start with nothing. You started with nothing, and you can’t use your name, Kevin O’Leary. What would you focus on? Wow, well, that’s a tough one, Grant. Like, that’s a real tough one. Does it make se…
A tour inside the vampish G450 of @sandracorinna #sckaviation#gulfstreamG450
How much did it cost you to do the complete airplane? Over 5.5 million? Wow, wow, wow! I mean, you like it? It’s amazing! I don’t know if I feel like James Bond or Dr. Evil; it’s unbelievable. Catwoman? Oh, Catwoman! Sorry, tell me about it. I went for …
Jim Steyer on safely keeping children connected & engaged during school closures | Homeroom with Sal
Hi everyone! Sal Khan here. Welcome to the Daily Homeroom. Uh, for those of y’all who don’t know what this is, you’re just showing up off of Facebook or YouTube. This is something that we started once we started seeing math school closures, and it’s reall…