yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

2015 AP Calculus AB 6a | AP Calculus AB solved exams | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Consider the curve given by the equation (y^3 - xy = 2). It can be shown that the derivative of (y) with respect to (x) is equal to (\frac{y}{3y^2 - x}).

All right, write an equation for the line tangent to the curve at the point ((-1, 1)).

So, we could figure out the equation for the line if we know the slope of the line and we know a point that it goes through. So that should be enough to figure out the equation of the line.

The line's going to have a form (y = mx + b). (m) is the slope and is going to be equal to (\frac{dy}{dx}) at that point. We know that that's going to be equal to, let's see, (y) is 1 when (x) is -1.

So, (y = 1), so (\frac{1}{3y^2}) - (x), when (y = 1), since (x = -1), we can substitute this in. So this is (\frac{1}{3 \cdot 1^2}) which is (3 - (-1)).

So, this is the same thing as (3 + 1) and so this is equal to (\frac{1}{4}).

And so, the equation of our line is going to be (y = \frac{1}{4}x + b).

Now we need to solve for (b) and we know that the point ((-1, 1)) is on the line. So we can use that information to solve for (b).

This line is tangent to the curve, so it includes this point and only that point. That's what has in common with the curve.

So, when (y = 1) when (x = -1 + b), and so we have (1 = -\frac{1}{4} + b).

You add (\frac{1}{4}) to both sides and you get (b) is equal to, we could either write it as (1) and (\frac{1}{4}) which is equal to (\frac{5}{4}) which is equal to (1.25).

We could write it any of those ways.

So the equation for the line tangent to the curve at this point is (y = \frac{1}{4}x + \frac{5}{4}) and we're done, at least with that part of the problem.

More Articles

View All
Charlie Munger's Final Advice For 2024.
I basically believe in a soldier on system. Lots of hardship will come, and you got to handle it well. I soldering through Charlie Munger, sadly passed away in November 2023, one month shy of his 100th birthday. But in a big stroke of luck for us investor…
Overview of ancient Greece | World History | Khan Academy
I am now going to give an overview of ancient Greece. In future videos, we’re going to go into a lot more depth on a lot of these events and ideas, but this one is to give you context on the big picture. Just to start, let’s begin with the name Greece. I…
10 Things I Wish I Knew Before Investing
Hey guys, welcome back to the channel. In this video, I’m going to be going through 10 things I wish I knew before I started investing, so hopefully we can get through these 10 in around about 10 minutes. So, time is on, let’s get stuck into it. The firs…
TRUMP JUST STORMED WALL STREET
What’s up, grab it’s guys here. So, normally I don’t make videos like this, and I tend to stay away from anything involving politics. But today we gotta talk about one of the most requested topics of investing that stands to make or lose people a lot of m…
What Does Freedom Mean to You? | The Story of Us
Freedom is different things to different people. What do you think freedom is? [Music] Dear Slaw, Paul de Leeuw, betta em, but I feel of its own oxygen. Freedom, I don’t know who was attempting bullets. Na la libertad me is so I’ll see. Ali effective a …
The Problem With Rich People
Pick up to the sound of the alarm on your iPhone, and annoyed that you couldn’t get more sleep, you grudgingly unlock your phone to see what’s going on in the world. There’s an email from Amazon telling you that your package has been delivered. So, you fo…