yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

2015 AP Calculus AB 6a | AP Calculus AB solved exams | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Consider the curve given by the equation (y^3 - xy = 2). It can be shown that the derivative of (y) with respect to (x) is equal to (\frac{y}{3y^2 - x}).

All right, write an equation for the line tangent to the curve at the point ((-1, 1)).

So, we could figure out the equation for the line if we know the slope of the line and we know a point that it goes through. So that should be enough to figure out the equation of the line.

The line's going to have a form (y = mx + b). (m) is the slope and is going to be equal to (\frac{dy}{dx}) at that point. We know that that's going to be equal to, let's see, (y) is 1 when (x) is -1.

So, (y = 1), so (\frac{1}{3y^2}) - (x), when (y = 1), since (x = -1), we can substitute this in. So this is (\frac{1}{3 \cdot 1^2}) which is (3 - (-1)).

So, this is the same thing as (3 + 1) and so this is equal to (\frac{1}{4}).

And so, the equation of our line is going to be (y = \frac{1}{4}x + b).

Now we need to solve for (b) and we know that the point ((-1, 1)) is on the line. So we can use that information to solve for (b).

This line is tangent to the curve, so it includes this point and only that point. That's what has in common with the curve.

So, when (y = 1) when (x = -1 + b), and so we have (1 = -\frac{1}{4} + b).

You add (\frac{1}{4}) to both sides and you get (b) is equal to, we could either write it as (1) and (\frac{1}{4}) which is equal to (\frac{5}{4}) which is equal to (1.25).

We could write it any of those ways.

So the equation for the line tangent to the curve at this point is (y = \frac{1}{4}x + \frac{5}{4}) and we're done, at least with that part of the problem.

More Articles

View All
Calming an Overly Excitable Dog | Cesar Millan: Better Human Better Dog
[suspenseful music] [knock at door] Hi, Cesar! Hi, guys. How are you? Good morning! I have a surprise for your final challenge. NARRATOR: For the past month, Cesar has worked closely with the Calderones, a family of first responders, with a red-zone pit …
2017 AP Calculus AB/BC 4a | AP Calculus AB solved exams | AP Calculus AB | Khan Academy
We are now going to cover the famous, or perhaps infamous, potato problem from the 2017 AP Calculus exam. At time ( T ) equals zero, a boiled potato is taken from a pot on a stove and left to cool in a kitchen. The internal temperature of the potato is 91…
Grammatical person and pronouns | The parts of speech | Grammar | Khan Academy
Serious question, Grimian: What’s the difference between me and you? Uh, well, in order to get… I mean, I don’t mean that, you know, in a snarky way. I mean that in like a conceptual way. What’s the difference? Uh, in terms of these two pronouns, what’s s…
Doing these things might feel good, but they won’t derisk your startup.
You could be in that bottomless pit for years and be a startup founder that’s never built a product and has never gotten a single customer because you just cycled in and out of various forms of startup mentorship. The collecting of mentors, advisors—oh, …
Local linearity for a multivariable function
So a lot of the concepts that you learn about in multivariable calculus are really all about taking ideas that you originally might have learned in linear algebra and then transferring those to apply to nonlinear problems. So for example, I’m going to gi…
The Market Is About To Drop - Again
What’s up, grandma’s guys? Here, so throughout the last few days, there’s been a new topic that’s begun to make its way around the internet, and we got to break this down because it’s from the renowned investor Ray Dalio, with some rather serious claims t…