yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

2015 AP Calculus AB 6a | AP Calculus AB solved exams | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Consider the curve given by the equation (y^3 - xy = 2). It can be shown that the derivative of (y) with respect to (x) is equal to (\frac{y}{3y^2 - x}).

All right, write an equation for the line tangent to the curve at the point ((-1, 1)).

So, we could figure out the equation for the line if we know the slope of the line and we know a point that it goes through. So that should be enough to figure out the equation of the line.

The line's going to have a form (y = mx + b). (m) is the slope and is going to be equal to (\frac{dy}{dx}) at that point. We know that that's going to be equal to, let's see, (y) is 1 when (x) is -1.

So, (y = 1), so (\frac{1}{3y^2}) - (x), when (y = 1), since (x = -1), we can substitute this in. So this is (\frac{1}{3 \cdot 1^2}) which is (3 - (-1)).

So, this is the same thing as (3 + 1) and so this is equal to (\frac{1}{4}).

And so, the equation of our line is going to be (y = \frac{1}{4}x + b).

Now we need to solve for (b) and we know that the point ((-1, 1)) is on the line. So we can use that information to solve for (b).

This line is tangent to the curve, so it includes this point and only that point. That's what has in common with the curve.

So, when (y = 1) when (x = -1 + b), and so we have (1 = -\frac{1}{4} + b).

You add (\frac{1}{4}) to both sides and you get (b) is equal to, we could either write it as (1) and (\frac{1}{4}) which is equal to (\frac{5}{4}) which is equal to (1.25).

We could write it any of those ways.

So the equation for the line tangent to the curve at this point is (y = \frac{1}{4}x + \frac{5}{4}) and we're done, at least with that part of the problem.

More Articles

View All
Khan Academy Ed Talks with Pedro De Bruyckere - Thursday, November 11
Hello! Welcome to Ed Talks with Khan Academy. I am excited today to talk to Pedro de Broker, and, uh, my apologies in advance for not having the correct Belgian pronunciation of his name. He is an author who has authored a number of books. We’re going to …
THIS Will Get Bitcoin To 100K - The Future of Crypto | SALT 2021
Okay, we’re right now in New York City. Why? The SALT conference starts in about an hour. This conference is all about crypto, but some of the panels at this year’s conference are all about what is the regulator going to do? Where are we going with Bitcoi…
Miyamoto Musashi - How to Build Self-Discipline
Miyamoto Musashi was a samurai who went undefeated in 61 duels, so it’s safe to say that he knew something about building self-discipline. And a week before he passed away, he wrote a short work called Dokkodo, which roughly translates to “The Way of Wal…
Using carbon rich kelp to fertilize the farm | Farm Dreams
And this, uh, is the kill. Wow, I brought the kelp here about a week and a half ago. Okay, um, and it’s been setting here to dry, but you can smell it. It smells a little bit like the ocean. It does. It does. Oh, this is awesome. I just love it! They’re s…
15 Biggest Obstacles You'll Have in Your Life
Hey there, Alaer! Welcome back. Today’s chat is a little bit longer than usual because we really wanted to do all of these obstacles justice. You might not face every one of them in your life; we certainly hope not, but chances are you faced some of these…
Big Bend's New Bear Cubs | America's National Parks | National Geographic
NARRATOR: Nearly 6,000 feet up in the mountains, another mom has a huge challenge. A female black bear has spent the winter in a high mountain cave. She needs to teach her cubs to survive in the park. With little to no food or water for months, the stakes…