yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

2015 AP Calculus AB 6a | AP Calculus AB solved exams | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Consider the curve given by the equation (y^3 - xy = 2). It can be shown that the derivative of (y) with respect to (x) is equal to (\frac{y}{3y^2 - x}).

All right, write an equation for the line tangent to the curve at the point ((-1, 1)).

So, we could figure out the equation for the line if we know the slope of the line and we know a point that it goes through. So that should be enough to figure out the equation of the line.

The line's going to have a form (y = mx + b). (m) is the slope and is going to be equal to (\frac{dy}{dx}) at that point. We know that that's going to be equal to, let's see, (y) is 1 when (x) is -1.

So, (y = 1), so (\frac{1}{3y^2}) - (x), when (y = 1), since (x = -1), we can substitute this in. So this is (\frac{1}{3 \cdot 1^2}) which is (3 - (-1)).

So, this is the same thing as (3 + 1) and so this is equal to (\frac{1}{4}).

And so, the equation of our line is going to be (y = \frac{1}{4}x + b).

Now we need to solve for (b) and we know that the point ((-1, 1)) is on the line. So we can use that information to solve for (b).

This line is tangent to the curve, so it includes this point and only that point. That's what has in common with the curve.

So, when (y = 1) when (x = -1 + b), and so we have (1 = -\frac{1}{4} + b).

You add (\frac{1}{4}) to both sides and you get (b) is equal to, we could either write it as (1) and (\frac{1}{4}) which is equal to (\frac{5}{4}) which is equal to (1.25).

We could write it any of those ways.

So the equation for the line tangent to the curve at this point is (y = \frac{1}{4}x + \frac{5}{4}) and we're done, at least with that part of the problem.

More Articles

View All
Current direction | Electrical engineering | Khan Academy
In the last video, we talked about the meaning of current. Current is defined to be the movement of charge, amount of charge per second. We looked at a copper wire where electrons are carrying the current, and we also looked at a salt solution where both …
Refraction of light | Physics | Khan Academy
We see incredible optical illusions all around us almost every day, right? But what causes them? One of the main reasons is that when light goes from one medium to another, like say from vacuum or air into glass, it changes its speed, because of which it …
10 Things That Turn Ordinary People Into Entrepreneurs
There is no such thing as a born entrepreneur, but once you get into contact with certain things in life, your mindset changes. These are 10 things that turn ordinary people into entrepreneurs. Welcome to Alux. First up, a desire to take the future into …
Watch Koko the Gorilla Use Sign Language in This 1981 Film | National Geographic
[Music] Near San Francisco, California, a fascinating and now controversial experiment has been underway since 1972. Research psychologist Penny Patterson is teaching lowland gorillas Koko the American Sign Language of the deaf. Dr. Patterson claims Koko …
10 Good Problems You Want To Have
Everybody’s got problems, but you know not all problems are the same. There are some problems you actually want to have because they’re the indicator of a good life. When you take things for granted, you forget the good things that life has offered you. …
Creativity break: How do you apply creativity in algebra | Algebra 1 | Khan Academy
[Music] So if you’re trying to communicate a complex topic such as mathematics or a mathematical problem to the general public who might not be familiar with the specifics behind that problem, there are many different ways to help you get that concept acr…