yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

2015 AP Calculus AB 6a | AP Calculus AB solved exams | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

Consider the curve given by the equation (y^3 - xy = 2). It can be shown that the derivative of (y) with respect to (x) is equal to (\frac{y}{3y^2 - x}).

All right, write an equation for the line tangent to the curve at the point ((-1, 1)).

So, we could figure out the equation for the line if we know the slope of the line and we know a point that it goes through. So that should be enough to figure out the equation of the line.

The line's going to have a form (y = mx + b). (m) is the slope and is going to be equal to (\frac{dy}{dx}) at that point. We know that that's going to be equal to, let's see, (y) is 1 when (x) is -1.

So, (y = 1), so (\frac{1}{3y^2}) - (x), when (y = 1), since (x = -1), we can substitute this in. So this is (\frac{1}{3 \cdot 1^2}) which is (3 - (-1)).

So, this is the same thing as (3 + 1) and so this is equal to (\frac{1}{4}).

And so, the equation of our line is going to be (y = \frac{1}{4}x + b).

Now we need to solve for (b) and we know that the point ((-1, 1)) is on the line. So we can use that information to solve for (b).

This line is tangent to the curve, so it includes this point and only that point. That's what has in common with the curve.

So, when (y = 1) when (x = -1 + b), and so we have (1 = -\frac{1}{4} + b).

You add (\frac{1}{4}) to both sides and you get (b) is equal to, we could either write it as (1) and (\frac{1}{4}) which is equal to (\frac{5}{4}) which is equal to (1.25).

We could write it any of those ways.

So the equation for the line tangent to the curve at this point is (y = \frac{1}{4}x + \frac{5}{4}) and we're done, at least with that part of the problem.

More Articles

View All
Tom Friedman on saving lives and livelihoods & honoring the heroes of the crisis | Homeroom with Sal
Hi everyone! Welcome to the daily homeroom live stream. I’m Sal from Khan Academy, and I’m super excited about our guest today. So I’m actually just gonna go through my announcements pretty fast so that we have as much time with Tom Friedman as possible. …
Worked example: Derivative of cos_(x) using the chain rule | AP Calculus AB | Khan Academy
Let’s say we have the function f of x, which is equal to cosine of x to the third power. We could also write it like this: cosine of x to the third power. We are interested in figuring out what f prime of x is going to be equal to. So, we want to figure o…
Billionaire Warren Buffett: HOW to calculate the INTRINSIC VALUE of a STOCK
Actually, it’s very simple. The first investment primer—when would you guess it was written? The first investment primer that I know of, and it was pretty good advice, was delivered in about 600 BC by Aesop. And Aesop, you’ll remember, said, “A bird in th…
Varnas and the Caste System | World History | Khan Academy
In any textbook overview of Hinduism, you will quickly encounter the caste system. The caste system is this notion that people are born into the roles that they have to play in society. Now, the reason why I put this in quotes is because they are associat…
Khan Academy’s AI Tool for the Classroom: Teacher + Student Edition
Welcome, welcome! We are going to be starting promptly at 3 o’clock, but we’re going to start letting our participants come in, so thank you for joining us today. Hello, hello, hello! Thank you all for joining us. We still have some participants coming in…
Lecture 7 - How to Build Products Users Love (Kevin Hale)
All right, so um when I talk about making products users love, um what I mean specifically is like how do we make things that has a passionate user base that um our users are unconditionally um wanting it to be successful both on the products that we buil…