yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Examples finding the domain of functions


3m read
·Nov 11, 2024

In this video, we're going to do a few examples finding domains of functions. So, let's say that we have the function f of x is equal to x plus 5 over x minus 2. What is going to be the domain of this function? Pause this video and try to figure that out.

All right, now let's do it together. Now, the domain is the set of all x values that, if we input it into this function, we're going to get a legitimate output. We're going to get a legitimate f of x. And so, what's a situation where we would not get a legitimate f of x? Well, if we input an x value that makes this denominator equal to zero, then we're going to divide by zero, and that's going to be undefined.

And so we could say the domain, the domain here is all real values of x such that x minus 2 does not equal 0. Now, typically, people would not want to just see that such that x minus 2 does not equal 0. And so we can simplify this a little bit so that we just have an x on the left-hand side. So if we add 2 to both sides of this, we would get… actually let me just do that.

Let me add 2 to both sides. So, x minus 2 not equaling 0 is the same thing as x not equaling 2. And you could have done that in your head as well. If you wanted to keep x minus 2 from being 0, x just can't be equal to 2. And so, typically, people would say that the domain here is all real values of x such that x does not equal 2.

Let's do another example. Let's say that we're told that g of x is equal to the principal root of x minus seven. What's the domain in this situation? What's the domain of g of x? Pause the video and try to figure that out.

Well, we could say the domain, the domain is going to be all real values of x such that… are we going to have to put any constraints on this? Well, when does a principal root function break down? Well, if we tried to find the principal root, the square root of a negative number, well, that would then break down.

And so, x minus seven, whatever we have under the radical here, needs to be greater than or equal to zero. So such that x minus seven needs to be greater than or equal to zero. Now, another way to say that, if we add 7 to both sides of that, that would be saying that x needs to be greater than or equal to 7. So let me just write it that way.

So such that x is greater than or equal to 7. So all I did is I said, all right, where could this thing break down? Well, if I get x values where this thing is negative, we're in trouble. So, x needs to be greater… x minus 7, whatever we have under this radical, needs to be greater than or equal to zero. And so, if you say that x minus seven needs to be greater than or equal to zero, you add seven to both sides, you get x needs to be greater than or equal to positive seven.

Let's do one last example. Let's say we're told that h of x is equal to x minus 5 squared. What's the domain here? So let me write this down. The domain is all real values of x.

Now, are we going to have to constrain this a little bit? Well, is there anything that would cause this to not evaluate to a defined value? Well, we can square any value. You give me any real number, and if I square it, I'm just going to get another real number.

And so x minus 5 can be equal to anything, and so x can be equal to anything. So here, the domain is all real values of x. We didn't have to constrain it in any way like we did the other two. The other two, when you deal with something in a denominator that could be equal to zero, then you got to make sure that that doesn't happen because that would get you an undefined value.

Similarly, for a radical, you can't take the square root of a negative, and so we would once again have to constrain on that.

More Articles

View All
The Rainiest Place On Earth
[Derek] This is the world’s largest rainfall simulator, located in Tsukuba, Japan. Now, I know that it just looks like a warehouse with a lot of sprinklers, but this building is incredibly important. The science conducted here keeps tens of millions of pe…
Watch National Geographic Staff Answer Nearly Impossible Geography Questions | National Geographic
From the National Geographic headquarters in Washington, DC, welcome to the 29th National Geographic Bee. What are we doing here? The 4th grade! I was a participant of the GOP, so I might be pretty good at it. So let’s go! Friday, more than 40 species o…
Compare with multiplication examples
This here is a screenshot from this exercise on Khan Academy. It says the number 48 is six times as many as eight. Write this comparison as a multiplication equation. So pause this video and see if you can have a go at that. All right, so it sounds very …
How Crypto Scammed The World
In October 2008, a paper titled “Bitcoin: A Peer-to-Peer Electronic Cash System” was published, announcing the creation of one of the world’s first cryptocurrencies. This paper was written by Satoshi Nakamoto, the inventor of Bitcoin. Nakamoto then create…
Your Money Is Losing Value | DO THIS NOW
What’s up you guys? It’s Graham here. So today we gotta have the talk. I understand this might be a bit uncomfortable for somebody to listen to, and it’s not easy for me to talk so openly about this, but everyone needs to learn about this at some point be…
Mystery of Prince Rupert's Drop at 130,000 fps - Smarter Every Day 86
Hey, it’s me, Destin. Welcome back to Smarter Every Day! Today, we’re gonna do awesome science with orbits at Hot Glass here at Lookout Mountain, Alabama. Goggle up; science is about to happen! We’re gonna use a high-speed camera and learn about Prince Ru…