yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Connecting period and frequency to angular velocity | AP Physics 1 | Khan Academy


4m read
·Nov 11, 2024

What we're going to do in this video is continue talking about uniform circular motion. In that context, we're going to talk about the idea of period, which we denote with a capital T, or we tend to denote with a capital T, and a very related idea, and that's of frequency, which we typically denote with a lowercase f.

So you might have seen these ideas in other contexts, but we'll just make sure we get them, and then we'll connect it to the idea of angular velocity, in particular, the magnitude of angular velocity, which we've already seen we can denote with a lowercase omega. Since I don't have a little arrow on top, you could view it just the lowercase omega as the magnitude of angular velocity.

But first, what is period and what is frequency? Well, period is how long it takes to complete a cycle. If we're talking about uniform circular motion, a cycle is how long it takes. If this is, say, some type of a tennis ball that's tethered to a nail right over here and it's moving with some uniform speed, a period is how long does it take to go all the way around once.

So for example, if you have a period of one second, this ball would move like this: one second, two seconds, three seconds, four seconds. That would be a period of one second. If you had a period of two seconds, well, it would go half the speed: you would have one second, two seconds, three seconds, four seconds, five seconds, six seconds.

And if you went the other way, if you had a period of half a second, well then it would be one second, two seconds, and so your period would be half a second. It would take you half a second to complete a cycle. The unit of period is going to be the second, the unit of time, and it's typically given in seconds.

Now what about frequency? Well, frequency literally is the reciprocal of the period. So frequency is equal to ( \frac{1}{\text{period}} ). One way to think about it is, well, how many cycles can you complete in a second? Period is how many seconds it takes to complete a cycle, while frequency is how many cycles you can do in a second.

So for example, if I can do two cycles in a second: one second, two seconds, three seconds, then my frequency is two cycles per second. The unit for frequency is sometimes you'll hear people say just "per second." So the unit sometimes you'll see people just say an inverse second like that or sometimes they'll use the shorthand Hz, which stands for Hertz. Hertz is sometimes substituted with cycles per second.

This you could view as seconds or even seconds per cycle, and this is cycles per second. Now, with that out of the way, let's see if we can connect these ideas to the magnitude of angular velocity. So let's just think about a couple of scenarios.

Let's say that the magnitude of our angular velocity, let's say it is ( \pi ) radians per second. So if we knew that, what is the period going to be? Pause this video and see if you can figure that out.

So let's work through it together. This ball is going to move through ( \pi ) radians every second, so how long is it going to take for it to complete two ( \pi ) radians? Because remember, one complete rotation is two ( \pi ) radians. Well, if it's going ( \pi ) radians per second, it's going to take it two seconds to go two ( \pi ) radians. So the period here—let me write it—the period here is going to be equal to two seconds.

Now, I kind of did that intuitively, but how did I actually manipulate the omega here? Well, one way to think about it: the period I said, look, in order to complete one entire rotation, I have to complete two ( \pi ) radians. So that entire cycle is going to be two ( \pi ) radians. Then I'm going to divide it by how fast my angular velocity is going to be.

So I'm going to divide it by, in this case, I'm going to divide it by ( \pi ) radians per second. I'm saying how far do I have to go to complete a cycle, and I'm dividing it by how fast I am going through the angles, and that's where I got the two seconds from.

So already you can think of a formula that connects period and angular velocity. The period is equal to, remember, two ( \pi ) radians is an entire cycle, and so you just want to divide that by how quickly you are going through the angles. That will connect your period and angular velocity.

Now, if we know the period, it's quite straightforward to figure out the frequency. So the frequency is just ( \frac{1}{\text{period}} ). So the frequency is—we've already said it's ( \frac{1}{\text{period}} ), and so the reciprocal of ( \frac{2 \pi}{\omega} ) is going to be ( \frac{\omega}{2 \pi} ).

In this situation where the period was 2 seconds, if you don't even know what omega is and someone says the period is 2 seconds, then you know that the frequency is going to be ( \frac{1}{2} ) seconds, or you could view this as being equal to ( \frac{1}{2} ); you could sometimes see the units like that, which is kind of per second. But I like to use Hertz, and in my brain, I say this means ( \frac{1}{2} ) cycles per second.

So one way to think about it: it takes 2 seconds to complete. If I'm doing ( \pi ) radians per second, my ball here is going to go: one second, two seconds, three seconds, four seconds. You see just like that, my period is indeed 2 seconds, and you also see that in each second—remember, any second I cover ( \pi ) radians—well, ( \pi ) radians is half a cycle. I complete half a cycle per second.

More Articles

View All
Extracting Water on Mars | MARS: How to Survive on Mars
Water is the essential ingredient to life as we know it. Everywhere we look, water is where life is. So, that’s why the mantra for Mars exploration has been thus far: follow the water. We know some of the places where water happens to be because that’s cr…
This Is What It's Like to Live in a World Without Smell | Short Film Showcase
I wish I had more of these dreams. I had one dream I woke up so happy; it was so real. I remember being in the kitchen, and all of a sudden, I smelled broccoli. I took it out of the fridge. It was just so real, and when I woke up, I was happy. My friends …
Impact of the Crusades
We’ve already had several videos where we give an overview of the Crusades. Just as a review, they happen over roughly 200 years during the High Middle Ages. The First Crusade, at the very end of the 11th century, was actually the most successful of the C…
Safari Live - Day 246 | National Geographic
This program features live coverage of an African safari and may include animal kills and carcasses. Viewer discretion is advised. Oh, look at that! I have got one of the tallest animals in the world, and this animal is trying to feed from one of the lon…
Catching King Salmon in the Arctic | Life Below Zero
She’s not even holding an equilibrium there. Let’s just give her a few minutes, but she’s definitely waking up. I think it’s going to be worth releasing. That’s good. Send her up river. Well, I’m glad we did that. She deserved it. Well, let’s go check ou…
Saving the Florida Wildlife Corridor | National Geographic
[Music] Florida is like no other place on earth. It’s the land, it’s the water, it’s the people. And the Florida wildlife corridor is the backbone that connects it all. But we are seeing changes because of those thousand people a day that are moving to Fl…