yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

LC natural response derivation 4


3m read
·Nov 11, 2024

So now we're going to use the initial conditions to figure out our values, our two constant values A1 and A2 that is in our proposed solution for current for the LC circuit.

So one thing we need to do, because this is a second order equation, we need to have two initial conditions for the variable that we're studying here. So we're studying I right now. We have one initial condition for I, and because we have a second order equation, that means we need two initial conditions for I. So we have one initial condition right here, and what we'd like to know is what is di/dt at time equals zero. So the other piece of information we have is this v_kn at time equals zero.

Let's use that and we'll just plug that straight into the inductor equation. So the inductor equation at T equals 0, the voltage across the inductor is V_kn, and that equals L * di/dt. All right, and that means that di/dt equals V_kn over L. So now I have two initial conditions in terms of I. There's one and there's one there, and we can use these now to go after A1 and A2.

First off, let's plug in I for time equals zero and then see if we can work out something over here. So that means at time equals zero, the current is zero, and that equals A1 * cos(ω_kn * 0) + A2 * sin(ω_kn * 0). And what does this evaluate to? Okay, this is sin(0) and sin(0) is 0, and cosine of 0 is 1. So that comes up with 0 equal A1.

Okay, and A1 equals 0 means that this entire term of our solution just dropped out. All right, let me rewrite what we end up with. I equals A2 * sin(ω_kn * t). This whole term here just dropped out of the solution.

So here's our proposed solution down here. Now we need to go after A2. Let's do that. As you might suspect, we're going to use our second initial condition to do that. So to use our initial condition, we need di/dt. So let's take d/dt of this.

We're going to take d/dt of this whole equation, and on the left side, we'll get di/dt, and on the other side, we'll get d/dt of A2 * sin(ω_kn * t). Okay, so far so good? Let's roll it down again. So let's take that derivative. We get di/dt equals A2 comes out of the derivative, and the derivative of sin(ω_kn * t) with respect to t is ω_kn * cos(ω_kn * t).

We apply our initial condition. Let's go to t equals 0 and we know that di/dt was V/L equals A2 * ω_kn * cos(ω_kn * 0). And cosine of 0 goes to one, and so we can solve for A2. A2 equals V_kn over L * ω_kn.

So now we've solved for our second adjustable parameter, and we can write I. I was A2 * sin(ω_kn * t). So let's fill it in for A2. I equals A2, which is V_kn over L * ω_kn * sin(ω_kn * t).

And I want to go back now. I want to write this a little bit differently. I want to go back and plug in our value for ω_kn. So if we remember, we said ω₀ equals 1/sqrt(LC).

So now L * ω_kn equals 1/√(LC) * L, and that equals √(L/C). Lastly, I'll write 1/(L * ω_kn) equals √(C/L), just the reciprocal.

And now we can write I equals √(C/L) * V_kn * sin(ω_kn * t). And that is the solution for the natural response of an LC circuit. It's in the form of a sine wave, and the frequency is determined by ω_kn, which is the two component values, and the amplitude is determined by the energy we started with, which is represented here by V_kn and the ratio of the two components again.

So this is why I said at the beginning that this is where sine waves are born.

More Articles

View All
Thinking About Lockdowns
[voice from the audience] Hey! Hey. Where’s the Q&A? [Grey] Oh… right. I lost track of time. [confusedly] What… year is it? [retro video game sounds] How are you and Lady Grey doing during lockdown? We’re fine. Though we have become real little home…
Retire Early & Do These 15 Things
Retirement is not an age; it’s a number. When you hit your number, you can choose to retire. That number is when your investments generate at least 20 percent more than your expected cost of living. Yet, most people still look at retirement as an age mile…
Undefined limits by direct substitution | Limits and continuity | AP Calculus AB | Khan Academy
Let’s see if we can figure out the limit of x over natural log of x as x approaches one. Like always, pause this video and see if you can figure it out on your own. Well, we know from our limit properties this is going to be the same thing as the limit a…
15 Expensive Things That Are Worth The Money
Remember the banana duct tape to a wall that sold for 120,000? Yeah, okay, not everything that’s expensive is worth the money, but some things are. When you finally get rich, you’ll want to know where you should focus your spending. So here are 15 expensi…
Kevin O'Leary Jamming with Rock and Roll Legend Randy Bachman
Randy Bachman is a legend in the world of rock and roll. He’s earned over 120 gold and platinum albums and singles and sold over 40 million records over his long career as both a performer and producer. CBC Music has declared November as guitar month. In …
Evaluating composite functions: using tables | Mathematics III | High School Math | Khan Academy
[Voiceover] So we have some tables here that give us what the functions f and g are when you give it certain inputs. So, when you input negative four, f of negative four is 29. That’s going to be the output of that function. So we have that for both f and…