yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

LC natural response derivation 4


3m read
·Nov 11, 2024

So now we're going to use the initial conditions to figure out our values, our two constant values A1 and A2 that is in our proposed solution for current for the LC circuit.

So one thing we need to do, because this is a second order equation, we need to have two initial conditions for the variable that we're studying here. So we're studying I right now. We have one initial condition for I, and because we have a second order equation, that means we need two initial conditions for I. So we have one initial condition right here, and what we'd like to know is what is di/dt at time equals zero. So the other piece of information we have is this v_kn at time equals zero.

Let's use that and we'll just plug that straight into the inductor equation. So the inductor equation at T equals 0, the voltage across the inductor is V_kn, and that equals L * di/dt. All right, and that means that di/dt equals V_kn over L. So now I have two initial conditions in terms of I. There's one and there's one there, and we can use these now to go after A1 and A2.

First off, let's plug in I for time equals zero and then see if we can work out something over here. So that means at time equals zero, the current is zero, and that equals A1 * cos(ω_kn * 0) + A2 * sin(ω_kn * 0). And what does this evaluate to? Okay, this is sin(0) and sin(0) is 0, and cosine of 0 is 1. So that comes up with 0 equal A1.

Okay, and A1 equals 0 means that this entire term of our solution just dropped out. All right, let me rewrite what we end up with. I equals A2 * sin(ω_kn * t). This whole term here just dropped out of the solution.

So here's our proposed solution down here. Now we need to go after A2. Let's do that. As you might suspect, we're going to use our second initial condition to do that. So to use our initial condition, we need di/dt. So let's take d/dt of this.

We're going to take d/dt of this whole equation, and on the left side, we'll get di/dt, and on the other side, we'll get d/dt of A2 * sin(ω_kn * t). Okay, so far so good? Let's roll it down again. So let's take that derivative. We get di/dt equals A2 comes out of the derivative, and the derivative of sin(ω_kn * t) with respect to t is ω_kn * cos(ω_kn * t).

We apply our initial condition. Let's go to t equals 0 and we know that di/dt was V/L equals A2 * ω_kn * cos(ω_kn * 0). And cosine of 0 goes to one, and so we can solve for A2. A2 equals V_kn over L * ω_kn.

So now we've solved for our second adjustable parameter, and we can write I. I was A2 * sin(ω_kn * t). So let's fill it in for A2. I equals A2, which is V_kn over L * ω_kn * sin(ω_kn * t).

And I want to go back now. I want to write this a little bit differently. I want to go back and plug in our value for ω_kn. So if we remember, we said ω₀ equals 1/sqrt(LC).

So now L * ω_kn equals 1/√(LC) * L, and that equals √(L/C). Lastly, I'll write 1/(L * ω_kn) equals √(C/L), just the reciprocal.

And now we can write I equals √(C/L) * V_kn * sin(ω_kn * t). And that is the solution for the natural response of an LC circuit. It's in the form of a sine wave, and the frequency is determined by ω_kn, which is the two component values, and the amplitude is determined by the energy we started with, which is represented here by V_kn and the ratio of the two components again.

So this is why I said at the beginning that this is where sine waves are born.

More Articles

View All
5 Good Philosophies To Live By
Pay attention to what we’re about to tell you now because this is really important. There are many ways in which you can experience life, but not all of them will bring the same amount of joy, peace, and fulfillment when the game is finally over. In fact,…
How Is Warren Buffett Spending His $80B Net Worth?
Hey guys, welcome back to the channel. In this video, we’re going to be discussing exactly how Warren Buffett spends his billions. Warren Buffett, the Oracle of Omaha as he’s referred to, he’s currently the fourth richest person in the world with a net wo…
Blacksmith for Barter | Live Free or Die
Gonna be a hot one today in the mountains of Colorado. Primitive blacksmith Derik fires up his forge to nearly 2500 degrees, the ideal temperature to mold iron. Today I’m gonna continue working on my camp set, try to finish that out—four more pieces beca…
Influential points in regression | AP Statistics | Khan Academy
I’m pretty sure I just tore my calf muscle this morning while sprinting with my son. But the math must not stop, so I’m here to help us think about what we could call influential points when we’re thinking about regressions. To help us here, I have this …
You Can Always Leave
Imagine you have a friend called George… This story was misleading. George isn’t being threatened! He’s just being asked to pay his fair share like the rest of us. If he doesn’t like the arrangement, he can always leave. Let’s start with the question of …
Science Broadens Our Vision of Reality
There are many scientists and philosophers who’ve talked about this concept of a multiverse. But this is a very strict, very sober understanding of what a multiverse is. All of these universes in this multiverse obey the same laws of physics. We’re not ta…