yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

LC natural response derivation 4


3m read
·Nov 11, 2024

So now we're going to use the initial conditions to figure out our values, our two constant values A1 and A2 that is in our proposed solution for current for the LC circuit.

So one thing we need to do, because this is a second order equation, we need to have two initial conditions for the variable that we're studying here. So we're studying I right now. We have one initial condition for I, and because we have a second order equation, that means we need two initial conditions for I. So we have one initial condition right here, and what we'd like to know is what is di/dt at time equals zero. So the other piece of information we have is this v_kn at time equals zero.

Let's use that and we'll just plug that straight into the inductor equation. So the inductor equation at T equals 0, the voltage across the inductor is V_kn, and that equals L * di/dt. All right, and that means that di/dt equals V_kn over L. So now I have two initial conditions in terms of I. There's one and there's one there, and we can use these now to go after A1 and A2.

First off, let's plug in I for time equals zero and then see if we can work out something over here. So that means at time equals zero, the current is zero, and that equals A1 * cos(ω_kn * 0) + A2 * sin(ω_kn * 0). And what does this evaluate to? Okay, this is sin(0) and sin(0) is 0, and cosine of 0 is 1. So that comes up with 0 equal A1.

Okay, and A1 equals 0 means that this entire term of our solution just dropped out. All right, let me rewrite what we end up with. I equals A2 * sin(ω_kn * t). This whole term here just dropped out of the solution.

So here's our proposed solution down here. Now we need to go after A2. Let's do that. As you might suspect, we're going to use our second initial condition to do that. So to use our initial condition, we need di/dt. So let's take d/dt of this.

We're going to take d/dt of this whole equation, and on the left side, we'll get di/dt, and on the other side, we'll get d/dt of A2 * sin(ω_kn * t). Okay, so far so good? Let's roll it down again. So let's take that derivative. We get di/dt equals A2 comes out of the derivative, and the derivative of sin(ω_kn * t) with respect to t is ω_kn * cos(ω_kn * t).

We apply our initial condition. Let's go to t equals 0 and we know that di/dt was V/L equals A2 * ω_kn * cos(ω_kn * 0). And cosine of 0 goes to one, and so we can solve for A2. A2 equals V_kn over L * ω_kn.

So now we've solved for our second adjustable parameter, and we can write I. I was A2 * sin(ω_kn * t). So let's fill it in for A2. I equals A2, which is V_kn over L * ω_kn * sin(ω_kn * t).

And I want to go back now. I want to write this a little bit differently. I want to go back and plug in our value for ω_kn. So if we remember, we said ω₀ equals 1/sqrt(LC).

So now L * ω_kn equals 1/√(LC) * L, and that equals √(L/C). Lastly, I'll write 1/(L * ω_kn) equals √(C/L), just the reciprocal.

And now we can write I equals √(C/L) * V_kn * sin(ω_kn * t). And that is the solution for the natural response of an LC circuit. It's in the form of a sine wave, and the frequency is determined by ω_kn, which is the two component values, and the amplitude is determined by the energy we started with, which is represented here by V_kn and the ratio of the two components again.

So this is why I said at the beginning that this is where sine waves are born.

More Articles

View All
Testing Tesla on the Deadliest Road in America 🐉
This is my dad’s Tesla and I’m going to take it driving on… the Deadliest Road in America. But! I’m not going to be driving because I’ve just installed the full self-driving, pre-release BETA software. It’s only allowed right now on a tiny number of cars …
Regrouping to add 1-digit number | Addition and subtraction | 1st grade | Khan Academy
So, we have the number 35. The 3 is in the tens place, so it represents 30 or 3 tens—one 10, two groups of 10, three groups of 10. And then the 5 is in the ones place, so it represents five ones. We see them right over here—one, two, three, four, five. N…
12 CRAZIEST Screensavers!
Hey, Vsauce. Michael here, with a video inspired by Orange Pumpkin Seven, who asked me to cover cool screen savers. Now at first, I was like, screen savers? Modern monitors don’t even need them. But then I sleuthed around and realized what a great idea i…
Why "Fake It Until You Make It" Is Actually Great Advice
[Music] There’s an incredible fallacy that plagues contemporary train of thought that insists that in order to feel how you want to feel, you have to get something. You know, you won’t truly feel happy, confident, and motivated unless you have an awesome …
Ray Dalio: Are we in a Stock Market Bubble?
So Ray Dalio is back on YouTube and his most recent video is actually a really cool 10 minute explainer on whether we’re currently in a stock market bubble. Now Ray is obviously the founder of Bridgewater Associates, the most successful hedge fund the wor…
Overcoming Self-Hatred
Self-hatred is something I’ve struggled with a lot in the past, so this video is quite personal. The experience of self-hatred often goes together with depression and is basically a mechanism to cope with beliefs about oneself and our position in the grea…