yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

LC natural response derivation 4


3m read
·Nov 11, 2024

So now we're going to use the initial conditions to figure out our values, our two constant values A1 and A2 that is in our proposed solution for current for the LC circuit.

So one thing we need to do, because this is a second order equation, we need to have two initial conditions for the variable that we're studying here. So we're studying I right now. We have one initial condition for I, and because we have a second order equation, that means we need two initial conditions for I. So we have one initial condition right here, and what we'd like to know is what is di/dt at time equals zero. So the other piece of information we have is this v_kn at time equals zero.

Let's use that and we'll just plug that straight into the inductor equation. So the inductor equation at T equals 0, the voltage across the inductor is V_kn, and that equals L * di/dt. All right, and that means that di/dt equals V_kn over L. So now I have two initial conditions in terms of I. There's one and there's one there, and we can use these now to go after A1 and A2.

First off, let's plug in I for time equals zero and then see if we can work out something over here. So that means at time equals zero, the current is zero, and that equals A1 * cos(ω_kn * 0) + A2 * sin(ω_kn * 0). And what does this evaluate to? Okay, this is sin(0) and sin(0) is 0, and cosine of 0 is 1. So that comes up with 0 equal A1.

Okay, and A1 equals 0 means that this entire term of our solution just dropped out. All right, let me rewrite what we end up with. I equals A2 * sin(ω_kn * t). This whole term here just dropped out of the solution.

So here's our proposed solution down here. Now we need to go after A2. Let's do that. As you might suspect, we're going to use our second initial condition to do that. So to use our initial condition, we need di/dt. So let's take d/dt of this.

We're going to take d/dt of this whole equation, and on the left side, we'll get di/dt, and on the other side, we'll get d/dt of A2 * sin(ω_kn * t). Okay, so far so good? Let's roll it down again. So let's take that derivative. We get di/dt equals A2 comes out of the derivative, and the derivative of sin(ω_kn * t) with respect to t is ω_kn * cos(ω_kn * t).

We apply our initial condition. Let's go to t equals 0 and we know that di/dt was V/L equals A2 * ω_kn * cos(ω_kn * 0). And cosine of 0 goes to one, and so we can solve for A2. A2 equals V_kn over L * ω_kn.

So now we've solved for our second adjustable parameter, and we can write I. I was A2 * sin(ω_kn * t). So let's fill it in for A2. I equals A2, which is V_kn over L * ω_kn * sin(ω_kn * t).

And I want to go back now. I want to write this a little bit differently. I want to go back and plug in our value for ω_kn. So if we remember, we said ω₀ equals 1/sqrt(LC).

So now L * ω_kn equals 1/√(LC) * L, and that equals √(L/C). Lastly, I'll write 1/(L * ω_kn) equals √(C/L), just the reciprocal.

And now we can write I equals √(C/L) * V_kn * sin(ω_kn * t). And that is the solution for the natural response of an LC circuit. It's in the form of a sine wave, and the frequency is determined by ω_kn, which is the two component values, and the amplitude is determined by the energy we started with, which is represented here by V_kn and the ratio of the two components again.

So this is why I said at the beginning that this is where sine waves are born.

More Articles

View All
Warren Buffett: How To Achieve A 20% Return Per Year
The first role in investment is don’t lose, and the second rule of investment is don’t forget the first rule. And that’s all the rules there are. I mean, that if you buy things for far below what they’re worth and you buy a group of them, you basically do…
11 SIGNS That You SHOULD END EVERY RELATIONSHIP even it's your family or friend | STOICISM INSIGHTS
Have you ever felt like you’re at a crossroads, holding onto a relationship or friendship because it’s comfortable, familiar, but deep down you know it’s holding you back from truly flourishing? It’s a tough pill to swallow, realizing that sometimes the p…
How to Simplify Your Life | Minimalist Philosophy
Transcendentalist philosopher Henry David Thoreau argued that, for humans, simplicity is the law of nature. We thrive in simplicity: it’s an optimal state free of clutter and without unnecessary weight. When our lives are simple, it’s easier to see where …
Deriving Lorentz transformation part 2 | Special relativity | Physics | Khan Academy
We left off in the last video trying to solve for gamma. We set up this equation, and then we had the inside that, well, look, we could pick a particular event that is connected by a light signal. In that case, X would be equal to CT, but also X Prime wou…
I’m SHOCKED at how much YouTube paid me for a VIRAL VIDEO...
What’s up you guys, it’s Graham here! So, two things: number one, we just had our first video break 1 million views in one week on one video. Just to give you guys some context here, usually my channel does anywhere from 850,000 to about 1.1 million views…
Homeroom with Sal & Dave Travis - Wednesday, September 9
Hi, everyone! Sal here from Khan Academy. Welcome to our “Homeroom Live Stream.” I’m out here in California where the sky is looking very ominous. It looks like, yeah, you can’t—it’s bizarre. I’ve never quite seen this. For those of y’all who don’t know, …