yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

2015 AP Calculus AB 2a | AP Calculus AB solved exams | AP Calculus AB | Khan Academy


3m read
·Nov 11, 2024

Let f and g be the functions defined by ( f(x) = 1 + x + e^{x^2 - 2x} ) and ( g(x) = x^4 - 6.5x^2 + 6x + 2 ). Let R and S be the two regions enclosed by the graphs of f and g shown in the figure above.

So here I have the graphs of the two functions, and they enclose regions R and S. The first thing they want us to figure out is to find the sum of the areas of region R and S.

So the sum of those areas, you could think about it, we're going to go from ( x = 0 ) right over here to ( x = 2 ). So we're going to take the integral from ( x = 0 ) to ( x = 2 ).

Let me write this down: the area of R + S is equal to... let me write that a little bit neater. So the area of R + S is going to be equal to...

Let's see, we could take the integral from ( x = 0 ) to ( x = 2 ). And what are we going to integrate? Well, we're going to integrate the difference between the two functions, and really the absolute value of the difference.

Remember, we want the sums; we don't want to have negative area here. We want the sum of the areas of regions R and S. At some point, ( g(x) ) is above ( f(x) ), and at other points, ( f(x) ) is above ( g(x) ).

But if we take the absolute value, it doesn't matter which one we're subtracting from the other; we're just getting the absolute value of the difference.

So let's take the absolute value of ( f(x) - g(x) , dx ). So that's going to be the sum of the areas, or we could say this is going to be the integral from 0 to 2 of the absolute value ( f(x) = 1 + x + e^{x^2 - 2x} - g(x) , (-x^4 + 6.5x^2 - 6x - 2) ) take the absolute value ( dx ).

Now this would be pretty hairy to solve if we did not have access to a calculator. But lucky for us, on this part of the AP exam, we can use a graphing calculator.

So let's do that to evaluate this definite integral here. And if you're wondering why did I say minus two instead of plus two, remember we're subtracting.

We're subtracting ( g(x) ); we're finding the difference between them.

So let's input this function into my calculator, and I'm going to do the same thing that I did in part one where I'm just going to define... let me turn it on.

All right, so I'm going to actually clear that out, and I'm going to define this whole expression as ( y_1 ). So I am going to take the absolute value.

So let me see where the absolute value is; it's been a little while since I last used one of these. So maybe some math. Math. Number... Oh, there you go, absolute value.

So it's the absolute value of ( 1 + x + 2 e^{x^2 - 2x} - x^4 + 6.5x^2 - 6x - 2 ), and then we have to close the parentheses around the absolute value.

All right, so we've inputted ( y_1 ), and so now let's go over here and evaluate this definite integral. So we go to math and we scroll down to definite for function integral.

So click on that, and we're going to use ( y_1 ). So we go to variable, we go to the right to go to ( Y ) variables. It's a function variable that we just defined, and so we select ( y_1 ).

That's what we just inputted. Our variable of integration is ( x ), and our bounds of integration? Well, we're going to go from ( x = 0 ) to ( x = 2 ).

So we go from zero to two, and then we let the calculator munch on it a little bit. And we get... it's taking some time... time to calculate. It's still munching on it.

Let's see, this is taking a good bit of time. There you go! All right, so it's approximately 2. If you want to get a little more precise, it's 2.4. So this is approximately 2.4.

More Articles

View All
Underwater Snow Mobile | The Boonies
Any luck over there? Nope, no snowmobile yet. Maybe a rock and a log, 18 miles from the mainland, far outside the grid. Dan Burton is attempting to salvage a sunken snowmobile from the bottom of Lake Michigan. “I’m sure it’s here! I don’t see anybody bea…
a day full of eating in Tokyo,Japan 🍣~ spend the day with me🇯🇵
Hey fam! To welcome you to a day in my life in Tokyo. This day is full of adventures, and today I’m excited to share with you some of my favorite activities. First up, we have Ginson. The restaurant is hidden away from the street, but once you enter the r…
3 Easiest Ways to Prank Noobs -- "Up All Knight"
Welcome to Up All Night! Thank you, thank you. No, guys, seriously, please, thank you! Hey, today we’re discussing my three favorite ways to prank noobs. Ooh, sexy! There’s a lot of good ones. Okay, my first one is a package deal. When they’re not lookin…
How Much CAFFEINE KILLS?? .. and more: DONG!
Vsauce. Are you still paying money for things you have to wait to do in real life? Well, no worries, because I’ve got more free stuff you can do online now, guys. DONG. Lots of great suggestions from WeSaucers today. First from ‘fippoolive’, Google search…
Why you don't have enough money
So pretend you’re this guy and you’re in bed typing in random country names on Google Flights, checking the prices because you know after the pandemic is over, you’re gonna travel the world and see and taste things you’ve never seen or tasted before. But …
How To Compete With Amazon and Google
Like how the hell does anyone compete with like one of the greatest companies of all time on the thing that they’re experts at, right? And it turned out that just like picking the right avocado was too big of a challenge for like this trillion dollar comp…