yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Ice Spikes Explained


3m read
·Nov 10, 2024

Have you ever made ice cubes and then found that when you take them out of the freezer there are spikes on them? This phenomenon has caused a lot of curiosity and some concern. The truth is, there is a simple physical process responsible for ice cube spikes.

Ice cubes cool first from their top surface where they are in direct contact with the cold freezer air and from which evaporative cooling can occur. So the first ice crystals form on the surface of the ice cube and along its edges.

Now as that ice freezes, it expands by roughly eight percent. That is due to hydrogen bonding between the water molecules which makes them on average slightly further apart than they are in water. So as the ice grows in from all sides, the water in the middle has nowhere to go. And it is forced up and out through a hole in the ice.

These holes are often triangular in shape because ice crystals tend to meet at 60 degree angles. As the water comes up through the hole it freezes around the edges forming a hollow spike. And as the ice continues to grow, more water is forced up the spike, making it longer. This continues until all of the water is frozen, or until the end of the spike freezes shut.

If you want to make ice cube spikes, they can be created in most ordinary freezers and there are three steps you can take to increase your chances. Number one, the ideal temperature seems to be not too cold, between minus five and minus eight Celsius. That is cold enough to freeze the water, but not so quickly as to freeze off the tip of that ice cube spike.

Number two, distilled water seems to work better than tap water because even small concentrations of salt prevent spike formation. Number three, a fan in the freezer seems to help spike formation by increasing the circulation of the air and increasing evaporative cooling.

And given just the right conditions, very large ice spikes can form, for example, on bird baths. In these cases the spikes are known as ice vases, for obvious reasons. When looking at these structures, it is interesting to contemplate that they only form because of water’s unique property of expanding when it freezes.

If water didn’t expand when it froze, the whole earth would be dramatically different, because, well, since ice is less dense, it forms on the surface and actually insulates the water underneath, so it remains liquid and allows life to survive in it.

But if, instead, ice were denser than water, it would sink to the bottom allowing for further cooling of that water and more ice formation. And the ice would build up from the bottom upwards, giving less and less water for organisms to live in, until, if cold conditions persisted for long enough, all bodies of water would completely solidify as ice, meaning that virtually no life could live in them.

And at that point, the earth would also be completely white. So it would reflect more of the sun’s light into space, leading to further cooling. So if water didn’t expand when it froze, the whole earth would be a cold, lifeless snowball.

But it all depends on your starting conditions, because if there wasn’t very much ice on the earth to begin with, it would all sink to the bottom of bodies of water, including arctic sea ice, and that means the earth’s surface would be less reflective, so it would absorb more heat from the sun and it would get a lot warmer.

So if ice didn’t float, if ice was denser than water, either the earth would be much colder than it is now or much hotter than it is now. And in either case, life on earth might not exist. But if it did, we wouldn’t be able to make ice cube spikes.

More Articles

View All
Safari Live - Day 265 | National Geographic
This program features live coverage of an African safari and may include animal kills and carcasses. Viewer discretion is advised. What a great afternoon to start with! Look at the predetermined one of the water holes, and the Impala is drinking there. H…
360° Wingwalker - Part 2 | National Geographic
[Music] You know how sometimes you’re kind of the geek in class at school, and everybody’s always kind of bumping you around and pushing you around? You feel kind of dejected and alone. And then when you get into the lab, you’re just exploding all over th…
How you're going to die..
Ashes to ashes, dust to dust. From sand we came, to sand we’ll return. No matter what we do, no matter how hard we try, one day we’re living, the next we’re clocking out for the long nap. We all know this, but still, the thought of death is extremely scar…
How to quickly ruin the rest of your life
Here’s another quick tutorial on how to quickly ruin your life. Step one: Eliminate your goals. Don’t orient yourself towards a North star. Don’t develop a vision for what your life could be like. Doing this will make it impossible to progress in life, b…
The Power of the Night Sky | StarTalk
The night sky can inspire you on many, many levels. Most people’s concept of God has their God residing in the sky, not under their feet in the dirt. There’s a deep sense that what’s above us is greater than us, bigger than us, more powerful than us; seem…
Misconceptions About Falling Objects
Let’s say Jack holds both balls above his head and then he drops them at exactly the same time. What do you expect to see? Well, they’re going to hit the ground at the same time. I expect them to both land at the same time. The same time, same time! This…