yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Ice Spikes Explained


3m read
·Nov 10, 2024

Have you ever made ice cubes and then found that when you take them out of the freezer there are spikes on them? This phenomenon has caused a lot of curiosity and some concern. The truth is, there is a simple physical process responsible for ice cube spikes.

Ice cubes cool first from their top surface where they are in direct contact with the cold freezer air and from which evaporative cooling can occur. So the first ice crystals form on the surface of the ice cube and along its edges.

Now as that ice freezes, it expands by roughly eight percent. That is due to hydrogen bonding between the water molecules which makes them on average slightly further apart than they are in water. So as the ice grows in from all sides, the water in the middle has nowhere to go. And it is forced up and out through a hole in the ice.

These holes are often triangular in shape because ice crystals tend to meet at 60 degree angles. As the water comes up through the hole it freezes around the edges forming a hollow spike. And as the ice continues to grow, more water is forced up the spike, making it longer. This continues until all of the water is frozen, or until the end of the spike freezes shut.

If you want to make ice cube spikes, they can be created in most ordinary freezers and there are three steps you can take to increase your chances. Number one, the ideal temperature seems to be not too cold, between minus five and minus eight Celsius. That is cold enough to freeze the water, but not so quickly as to freeze off the tip of that ice cube spike.

Number two, distilled water seems to work better than tap water because even small concentrations of salt prevent spike formation. Number three, a fan in the freezer seems to help spike formation by increasing the circulation of the air and increasing evaporative cooling.

And given just the right conditions, very large ice spikes can form, for example, on bird baths. In these cases the spikes are known as ice vases, for obvious reasons. When looking at these structures, it is interesting to contemplate that they only form because of water’s unique property of expanding when it freezes.

If water didn’t expand when it froze, the whole earth would be dramatically different, because, well, since ice is less dense, it forms on the surface and actually insulates the water underneath, so it remains liquid and allows life to survive in it.

But if, instead, ice were denser than water, it would sink to the bottom allowing for further cooling of that water and more ice formation. And the ice would build up from the bottom upwards, giving less and less water for organisms to live in, until, if cold conditions persisted for long enough, all bodies of water would completely solidify as ice, meaning that virtually no life could live in them.

And at that point, the earth would also be completely white. So it would reflect more of the sun’s light into space, leading to further cooling. So if water didn’t expand when it froze, the whole earth would be a cold, lifeless snowball.

But it all depends on your starting conditions, because if there wasn’t very much ice on the earth to begin with, it would all sink to the bottom of bodies of water, including arctic sea ice, and that means the earth’s surface would be less reflective, so it would absorb more heat from the sun and it would get a lot warmer.

So if ice didn’t float, if ice was denser than water, either the earth would be much colder than it is now or much hotter than it is now. And in either case, life on earth might not exist. But if it did, we wouldn’t be able to make ice cube spikes.

More Articles

View All
I read 100 Philosophical Books. Here's the best one.
I remember feeling completely aimless in high school. None of my classes felt particularly meaningful to me. I would sit in class, stare straight ahead, and my mind would often just wander. At home, I would try to avoid thinking too much by playing video …
Buying a $45,000,000 Home In Los Angeles
[Music] Foreign [Music] How’s it going bud? Good to see you! Blowing up lately? We’re doing our best. We’re doing properties all around the world and I’m really excited that you’re here. I know last time we met we talked about doing a video together. We…
Crayfish Hunting in Tasmania | Gordon Ramsay: Uncharted
I’m 30 feet down using a dining system I’d never tried before called snuba. I’m trying to keep my air hose from strangling me, praying I don’t run into a great white below the surface. I try to focus on finding a crayfish. I fight through the thick kelp u…
Linear vs. exponential growth: from data | High School Math | Khan Academy
The number of branches of an oak tree and a birch tree since 1950 are represented by the following tables. So for the oak tree, we see when time equals 0 it has 34 branches. After three years, it has 46 branches, so on and so forth. Then for the birch t…
Peatlands Critical In Climate Change Fight | National Geographic
[Music] Nice. Yeah, really. PC, my name is Brett Azhagi, and I’m a postdoctoral researcher. We’re here to study the peatlands; you compare it to other soils. Peat is really carbon dense; it’s made up of partially decomposed plant material. All the carbon…
The Letter That Led to the Atomic Bomb | Genius
ALBERT EINSTEIN (VOICEOVER): Based on this new phenomenon, it is conceivable, though much less certain, that an extremely powerful bomb of a new type may be constructed. FRANKLIN DELANO ROOSEVELT: A single bomb of this type, carried by boat and exploded …