yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Definite integral of radical function | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So we want to evaluate the definite integral from -1 to 8 of 12 * the cube root of x dx. Let's see, this is going to be the same thing as the definite integral from -1 to 8 of 12 * the cube root is the same thing as saying x to the 1/3 power dx.

And so now if we want to take the anti-derivative of this stuff on the inside, we're just going to do essentially the power rule. You could use the power rule of integrals, or it's the reverse of the power rule for derivatives, where we increase this exponent by one and then we divide by that increased exponent.

So this is going to be equal to 12 * x to the 1/3 + 1. Let me let me do that in another color just so we can keep track of it: x to the 1/3 + 1. And then we're going to divide by 1/3 + 1.

And so what's 1/3 + 1? Well, that's 4/3. 1/3 + 3/3, that's 4/3. So I could write it this way: I could write this as x to the 4/3 divided by 4/3.

And this is going to be, and I'm going to evaluate this at the bounds, so I'm going to evaluate this at, and I'll do this in different colors, I'm going to evaluate it at 8 and I'm going to evaluate it at -1. And I'm going, I'm going to subtract it evaluated at -1 from this expression evaluated at 8.

And so what is this going to be equal to? Well actually, let me simplify a little bit more. What is 12 divided by 4/3? So 12, I'll do it right over here. 12 over 4/3 is equal to 12 * 3/4, which we could use 12 over 1 * 3/4. 12 / 4 is 3, so this is going to be equal to 9.

3/4 of 12 is 9, so we could rewrite this. We could write this as 9 * x to the 4/3 power. So if we evaluate it at 8, this is going to be 9 * 8 to the 4/3 power. And from that, we're going to subtract it evaluated at -1. So this is going to be 9 * (-1) to the 4/3 power.

So what is 8 to the 4/3 power? I'll do it over here. So 8 to the 4/3 is equal to (8 to the 1/3) to the 4th power. These are just exponent properties here. 8 to the 1/3, the cube root of 8 or 8 to the 1/3 power, that's 2 because 2 to the 3 power is 8.

And 2 to the 4th power, well 2 to the 4th power is equal to 16, so 8 to 4/3 is 16. And what's (-1) to the 4/3? We'll say (-1) to the 4/3 is equal to -1. There are several ways you could do it; you can say -1 to the 4th and then the cube root of that, or the cube root of negative 1 and then raise that to the 4th power either way.

So let's do it the first way: 1 to the 4th and then take the cube root of that. Well negative 1 to the 4th is just 1, and then 1 to the 1/3 power, well that's just going to be equal to 1. So what we have here in blue, that's just equal to 1.

So we have 9 * 16 - 9 * 1. Well, that's just going to be 9 * 15. We have 16 - 9, and then we're going to take away a 9, so that's going to be 9 * 15.

So what is that? That is going to be equal to 9 * 15, which is 90 + 45, which is equal to 135. 135, and we're done.

More Articles

View All
Ten Years Later
[patriotic instrumental music, Edison Records phonograph cylinder - Rule, Britannia!] Hello Internet. Well, here we are. One decade later. Ha! I wish that was how it worked, but it is not. No, YouTube still feels like my new job even though I’ve put in a…
Worked example: Parametric arc length | AP Calculus BC | Khan Academy
Let’s say that X is a function of the parameter T, and it’s equal to cosine of T, and Y is also defined as a function of T, and it’s equal to sine of T. We want to find the arc length of the curve traced out, so the length of the curve from T equals 0 to …
The Shadow Of Toxic Positivity
Negative thinking can really impede one’s ability to lead a fulfilling life. When everything is wrong with the world and nothing is worth pursuing; what’s the point in life, really? Even though a positive mindset is generally more preferable than a negati…
Identifying centripetal force for cars and satellites | AP Physics 1 | Khan Academy
So here we have something that you probably have done in the last, maybe in the last day. If we’re in a car and we’re just making a turn, let’s say at a constant speed on a road that is flat, so it’s not a banked racetrack or anything like that, what is k…
How Does Kodak Make Film? (Kodak Factory Tour Part 1 of 3) - Smarter Every Day 271
Hey, it’s me, Destin. Welcome back to Smarter Every Day. I love analog film photography. There’s something to me about being able to capture a memory in a physical object with light and physics and chemistry. It’s just beautiful. In a previous episode of…
BONUS: History of the possessive apostrophe | The Apostrophe | Punctuation | Khan Academy
Hello Garans and historians and linguists and friends. David here along with Jake. Hey! And Paige. Hello! I want to continue our discussion of the history of the apostrophe in English. What I’m having Jake draw for me right now is an Old English king, be…