yego.me
💡 Stop wasting time. Read Youtube instead of watch. Download Chrome Extension

Definite integral of radical function | AP Calculus AB | Khan Academy


2m read
·Nov 11, 2024

So we want to evaluate the definite integral from -1 to 8 of 12 * the cube root of x dx. Let's see, this is going to be the same thing as the definite integral from -1 to 8 of 12 * the cube root is the same thing as saying x to the 1/3 power dx.

And so now if we want to take the anti-derivative of this stuff on the inside, we're just going to do essentially the power rule. You could use the power rule of integrals, or it's the reverse of the power rule for derivatives, where we increase this exponent by one and then we divide by that increased exponent.

So this is going to be equal to 12 * x to the 1/3 + 1. Let me let me do that in another color just so we can keep track of it: x to the 1/3 + 1. And then we're going to divide by 1/3 + 1.

And so what's 1/3 + 1? Well, that's 4/3. 1/3 + 3/3, that's 4/3. So I could write it this way: I could write this as x to the 4/3 divided by 4/3.

And this is going to be, and I'm going to evaluate this at the bounds, so I'm going to evaluate this at, and I'll do this in different colors, I'm going to evaluate it at 8 and I'm going to evaluate it at -1. And I'm going, I'm going to subtract it evaluated at -1 from this expression evaluated at 8.

And so what is this going to be equal to? Well actually, let me simplify a little bit more. What is 12 divided by 4/3? So 12, I'll do it right over here. 12 over 4/3 is equal to 12 * 3/4, which we could use 12 over 1 * 3/4. 12 / 4 is 3, so this is going to be equal to 9.

3/4 of 12 is 9, so we could rewrite this. We could write this as 9 * x to the 4/3 power. So if we evaluate it at 8, this is going to be 9 * 8 to the 4/3 power. And from that, we're going to subtract it evaluated at -1. So this is going to be 9 * (-1) to the 4/3 power.

So what is 8 to the 4/3 power? I'll do it over here. So 8 to the 4/3 is equal to (8 to the 1/3) to the 4th power. These are just exponent properties here. 8 to the 1/3, the cube root of 8 or 8 to the 1/3 power, that's 2 because 2 to the 3 power is 8.

And 2 to the 4th power, well 2 to the 4th power is equal to 16, so 8 to 4/3 is 16. And what's (-1) to the 4/3? We'll say (-1) to the 4/3 is equal to -1. There are several ways you could do it; you can say -1 to the 4th and then the cube root of that, or the cube root of negative 1 and then raise that to the 4th power either way.

So let's do it the first way: 1 to the 4th and then take the cube root of that. Well negative 1 to the 4th is just 1, and then 1 to the 1/3 power, well that's just going to be equal to 1. So what we have here in blue, that's just equal to 1.

So we have 9 * 16 - 9 * 1. Well, that's just going to be 9 * 15. We have 16 - 9, and then we're going to take away a 9, so that's going to be 9 * 15.

So what is that? That is going to be equal to 9 * 15, which is 90 + 45, which is equal to 135. 135, and we're done.

More Articles

View All
How To Use The 2023 Market Crash To Get Rich
What’s up guys? It’s Graham here. So today, we have to answer the age-old question that philosophers and economists have pondered since the beginning of time, and that would be: Am I wearing pants? And the answer is no. Just kidding! Instead, it’s whether…
Convergence on macro scale | GDP: Measuring national income | Macroeconomics | Khan Academy
We’ve talked about things that might drive inequality, things that Thomas Piketty refers to as forces of divergence. But now, let’s think about, or at least some of what he cites as forces of convergence. So, forces of convergence are things that might ma…
I found the WORST thing money can buy: Virtual Real Estate for $200,000
What’s up, you guys? It’s Graham here. So, it’s 2018, and I thought we’ve seen it all—from an elderly lady suing her nephew over their split lottery winnings, two people eating Tide Pods, to the worst of all: the closing of Toys R Us. But no! I opened my …
3d vector field example | Multivariable calculus | Khan Academy
So in the last video, I talked about three-dimensional vector fields, and I finished things off with this sort of identity function example where at an input point (X, Y, Z), the output vector is also (X, Y, Z). Here, I want to go through a slightly more …
Exploring the Ocean for Sixty Years | Best Job Ever
Even if you’ve never seen the ocean or touch the ocean, the ocean touches you with every breath you take, every trough of water you drink. It’s the ocean. It’s the ocean for me. Being a biologist, just following my heart has led me to some fascinating pl…
Kyle S. More on Playing Hinckley | Killing Reagan
[Music] John was he was lonely and he was depressed. He wasn’t a monster by any mean, you know he was a normal young man, um, who started getting sick and didn’t get the right help in time. He wasn’t medicated. Mental health was different back then; they…